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Perplexity

1
PPL = exp {— —Score(X)}
|X|
Scores of beams candidate from decoder are given by their likelihood

Fine-tune an LM by minimizing the Perplexity (PPL) on the “gold” references could fit it to the ground-truth

transcriptions

No information from ASR beam candidates utilized

Sometimes propose bad’’ hypotheses -> give a higher score on inferior hypotheses than the “gold”

reference
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hy = f(he—q1, x¢) hy = g(x¢, self attention(x¢, Xcontext))
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Score (Likelihood) of a Sentence

Causal Non-Causal
| X] | X|
Score€(X) = ZlogP(xt|X<t; ) Score™(X) = ZlogP(xt|X\t; )
t=1 t=1
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Experiment

* Experiment with LibriSpeech benchmark.

* Baseline Decoder:
Acoustic model: chain system based on Factorized Time Delay Neural Network (TDNN-F)
Language model: Trigram LM

* Language models for rescoring:
LSTM: Causal, 4 layers, 512 hidden dimension
Transformer Decoder: Causal, 12 layers, 768 hidden dimension, 12 self-attention heads
Transformer Encoder: Non-causal, 12 layers, 768 hidden dimension, 12 self-attention heads

All neural LMs are pretrained on a joint of enWiki and bookCorpus.



Empirical Results
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------------------- 1 * LMLM training significantly

Test - clean |
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decreases WER for LSTM and
Transformer Encoder

* Transformer Decoder without
LMLM training is already very
competitive.

Word Error Rate
Word Error Rate
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* May be caused by the fundamental
difference between causal LM
score and non-causal LM score.

Dev - Other
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* Julian Salazar, et.al “Masked language model scoring,” 58th

ACL, 2019, pp. 2699-2712.
* Joonbo Shin, et.al “Effective sentence scoring method using

bert for speech recognition,” ACML, 2019, pp. 1081-1093
LSTM Transformer Transformer * Lu Huang, et.al. “An improved residual Istm architecture for
Decoder Encoder acoustic modeling,” 2" ICCCS. IEEE, 2017, pp. 101-105.
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