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P Wireless Sensor Networks

Inreductionte — Broadly classified into: centralized, decentralized and distributed.
@ Drawbacks of centralized & decentralized WSNs

Networks
® Single or few fusion centers creates bottle neck for data
aggregation
® Vulnerable to attacks
® Implementation and design issues (Tx/Rx power and resource
management)

System mode
d P

Simulation results

nclusions

References

CENTRALIZED DECENTRALIZED oISTRIBUTED
Ay |y

Source: Baran, Paul. "On distributed communications networks.” |EEE transactions on Communications Systems 12, no. 1, 1964
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Characteristics / Advantages
® No fusion center
® Fault tolerance
® Efficient resource management

Challenges
® Time synchronization
® Noise in wireless channels
o Constraints
® Nearest neighbor communication.
Additive channel noise.

Memory constraints.
Secure information transfer.

Applications

® Environmental monitoring

® Habitat monitoring

® |ndustrial and military applications
® Social networks
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Introduction to
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@ Graph representation of distributed network

® Distributed network with N nodes.

® Undirected graph G = (V, &), communications among neighbors.

® Degree matrix D : Diagonal matrix with the degrees of the
nodes.

® Adjacency matrix A : a; = 1 if {i,j} € £ and a; = 0, otherwise.
® Laplacian matrix L = D — A used to characterize network.
® Spectral radius of the graph, p = Amac(A).
® Principal eigenvector of A is always positive.
Labeled graph Degree matrix Adjacency matrix Laplacian matrix
200000 010010 2 -1 0 0 -1 0
e 030000 101010 -1 3 -1 0 -1 0
oe'o 002000 010100 0 -1 2 -1 0 0
. 000300 001011 0 0 -1 3 -1 -1
ee 000030 |(1t10100]|-1-1 0-1 3 0
0000O0T1 000100 0 0 0 -1 0 1

Source: http://kuanbutts.com/2017/10/21 /spectral-cluster-berkeley /
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Distributed Spectral Radius
Estimation

@ Digital communication setting

® G. Muniraju, C. Tepedelenlioglu and A. Spanias, " Consensus
Based Distributed Spectral Radius Estimation,” in IEEE Signal
Processing Letters, vol. 27, pp. 1045-1049, 2020, doi:
10.1109/LSP.2020.3003237.

@ Analog communication setting

® G. Muniraju, C. Tepedelenlioglu and A. Spanias, "Distributed
Spectral Radius Estimation in Wireless Sensor Networks,” in
2019 53rd Asilomar Conference on Signals, Systems, and
Computers, Pacific Grove, CA, USA, 2019, pp. 1506-1510, doi:
10.1109/IEEECONF44664.2019.9049018.
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System Model

Assumptions on System model

Each node has a real number which is its own initial
measurement.

Transmission power determines the communication radius.
Nodes know their locations and can estimate their neighbors.
Nodes broadcast their state values to their neighbors in a
synchronized fashion.

Communications:

® Packet loss model for digital communication models.
® Time-varying graphs: a message is received with a probability
1 — p, in order to model the imperfect communication links.
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Problem Statement

@ To reach consensus at each node on (log(p)) of the graph, using
only local neighbor communications.

@ Packet loss in digital models.

@ Study convergence of the algorithm for fixed graphs and
time-varying graphs.

Qurs is the first work to address distributed spectral radius estimation in
WSNs for both analog and digital communication models.
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e To study graph coloring methods.
e o Properties of Hamiltonian paths.
statement 3 4 :
R @ To understand the convergence of belief propagation algorithms.
PRl o Estimating and controlling the connectivity of the network.
Analysis on e To study Mixing time of networks.
Time-varying
graphs o lIrregularity, sparsity and density of the networks.

Simulation results
Conclusions

References > .

Dense Graph Sparse Graph
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Distributed Spectral Radius
Estimation

Digital communication model

@ We consider packet loss i.e, transmitted message can be lost
(failure) with a probability of p, independently for each edge.

@ No analog noise.

@ Main update equations:

xi(t) = |og(ZN:a,-j exp(x;(t — 1))) L fori=1,---.N.

J=1

y,-(t) = %X,'(f).
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Distributed Spectral Radius
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Theorem
In a connected non-bipartite graph G, with all nodes initialized to
x(0) = 0, we have for large t,

3(6) = o)1 + ol s 1] + O3 (12/0)')

where, qq is the principal eigenvector of A. In bipartite graphs,

y(t) = log(p)1 + % (/og{m JZ,_V; qu + (=1)fqu ,ﬁ; qu} )

. 0(1 (u/ |pN_1|)>t )
t p

where, qu is the eigenvector corresponding to eigenvalue —p of A.
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e Theorem’s Proof

o x(t) = log[Aexp[x(t — 1)]] = log|A exp[log|[Aexp[x(t — 2)]]|| =
log [A” exp[x(0)]].

@ EVD of A as A = QAQ™', where Q = [q1.q2.-- - . qn]
Distributed ° Al = (QAQT)(QAQT) Tt (QAQT) - QAtQT‘
pheeral Fadlis @ Since A s real and symmetric, Q'=Q" thusQ'Q =1
°

y(t) = LloglQA'QT1].
o y(1) = 1 (loglQA"y Q1] + tlog()1 ) -
log(p)1 + 1 (Iog[QS‘QTl])

e QS'Q"1= Z:Nzl qQis; P’:l q9ij = q1 Zszl qy + Z:\’zz qis; 2}11 dij-

@ q; is the principal eigenvector. q; is real and positive, with h—norm 1.

o y(t) = log(p)1 + log[a||as]ls] = 0(% (pz/p)f)

21-12
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Algorithm 1 : Distributed estimation of spectral radius
1: Input: N, A, f.x

2: Initialization: x(0) = [0,--- ,0]7

3 fort=1,2-- ,tmax
Distributed 4 zi(t) = log ( Z‘}\:l aij exp(z;(t — 1))
Spectral Radius 5: yi(t) = tai(t)
Estimation 6: end

7: Output:  ;(f1.x)

Time

grap @ For d-regular graphs, y;(t) = d = p for every t, and therefore has
Simulation results zero error. Since for d-regular graphs, q: = N2, making the term
Conclusions %|0g [(I1||C|1||1] =0.

References

@ log(-) and exp(-) can be replaced by any pair of inverse functions and
appropriate modifications in Algorithm. The advantage of the
log — exp pair is that the elements of x(t) grow linearly with t, which
ensures that y(t) = t~1x(t) converges.

2113
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Time-varying graphs

We model the unreliable links or packet loss as a time-varying graph
that has independently removed edges with probability p.

)it 4 1) = |og(exp(xj(t) S abi(t) exp(x;(r))).

bj(t) ~ Ber(1 — p), and P(b;(t) =0) = p,i # j, is independent
Bernoulli random variables capturing packet loss on edges.

x(t) = |og[(H;_1(| + Ak)) 1}

yi(t) = %|OE(HL:1 (1+ Bk)>, where B,((f) ~ Bin(d,1— p)

Regular graphs : y(t) =~ log(1 + d(1 — p))1.

@ lrregular graphs : y(t) =~ log(1 + p(1 — p))1.

exply(t)]—1
1 .

Hence, p ~ —
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Non-bipartite graphs

o N=75
e p=237.1142
o log(p) =3.614

(a)

= =Actual log(p)

RS
Iterations (t)

(b)

s 40 45 50

Figure: (a) Non-bipartite graph with N = 75 nodes. (b) Convergence of Algorithm 1 for the

non-bipartite graph.
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Bipartite graphs

o V=20
o p= 43739
o log(p) = 1.4756

= =Actual log(p)

o L L

o s 1 15 W » w e w s
Iterations (1)

(c) (d)

0

Figure: (c) Bipartite graph with N = 20 nodes. (d) Convergence of Algorithm 1 for the

bipartite graph.
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Regular graphs

e N =100
o d={10,20.-- 60}
e p={0,0.1,---,0.8}.
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Figure: Estimated log(1 + d(1 — p)) for a regular time-varying graphs with N = 100.
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Irregular graphs

o N =100
o d = {10,20.--- .60}
e p=10.0.1,---,0.8}.
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Figure: Estimated log(1 + p(1 — p)) for a irregular time-varying graphs with N = 100.



ICASSP2021

GowthamMuniraju
(AsU)

Conclusions

2119

Summary

o A distributed algorithm to compute p of the network in the
presence of additive channel noise or packet loss was presented.

@ Simple log-sum-exp based update to converge on p.

o Convergence of the algorithm and estimation error were
presented, for both bipartite and non-bipartite graphs.

@ The algorithm works for any connected graph structure.
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