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Motivations and Challenges

•Motivation: Antenna selection technique can
1 Reduce the hardware and computational complexity
of the Massive MIMO systems.

2 Benefits the diversity or beamforming gains.

•Challenge: Find an optimal policy to select a
subset of antennas at each time slot such that
1 The long term data rate is maximized.
2 While only the partial CSI is available.

System Model

Let M and N be the number of BS antennas and
radio frequency (RF) chains, respectively (M >
N). We assume :
•Time division duplex (TDD) scheme.
•Single-antenna user.
•Channels evolve according to a Markov process.
Main goal: Select the best N antennas to maxi-
mize the expected long-term data rate.

POMDP Formulation

The partially observable Markov decision process
(POMDP) frame-work represented as
• State Space denotes as S , is a set of all
possible state labeled as sj.

sj = h̃j , [h̃1j h̃2j ∙ ∙ ∙ h̃Mj]
T ,

where h̃ij ∈ {α1, α2, ∙ ∙ ∙ , αQ},
•Action: Selecting N out of M antennas.

at , [a1 a2 ∙ ∙ ∙ aM ]T . Here ai ∈ {0, 1}.
• Transition Probability, T is a matrix
where the (i, j) element is
Tij = Pr(st = sj|st−1 = si)

QM

i=1.
•Observation: ot , diag(at)st.
•Observation probability:

O(o, a) = diag
(

Pr
{

ot = o|st = si, at = a
}QM

i=1

)

• Reward function: The MISO data rate

R(s, a) = log2

(

1 +
P‖o‖2

σ2

)

•Belief at time t is bt , [b1,t b2,t ∙ ∙ ∙ b|S|,t]T

where bj,t = Pr{st = sj|Ht−1}. Here
Ht−1 , {ot−1, at−1,Ht−2}.

Policy and Objective Function

•Policy: At time t policy maps the belief vector
bt to the action at such that at = π(bt).

•Objective Function:

Jπ(b0) = E{st}

{ ∞∑

t=0
R(st, at)

∣
∣
∣
∣
∣b0

}

The main goal: Find the optimal policy, π∗ as
π∗ = arg maxπ Jπ(b0), for any b0.

Two-state Channel Model

Gilbert-Elliot channel model (Q = 2): h̃ij ∈
{α, β}, for j = 1, 2, . . . 2M and i = 1, 2, . . . ,M ,
where |α| > |β|.
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Figure 1: A two-state Markov chain model.

The channel state is positively correlated, i.e,
p11 > p01.

Optimality of the Myopic Policy
for Two-state Channel Model

•Equivalent belief vector: ωt , [ω1,t . . . ωM,t]T

where
ωi,t , Pr(ci,t = 1|Ht−1).

• ci,t = 1, means the channel between the i-th antenna
and the user is in good state.

• ωt+1 is updated as

ωi,t+1 =






p11 if ai,t = 1, ci,t = 1;

p01 if ai,t = 1, ci,t = 0;

ωi,tp11 + (1− ωi,t)p01 if ai,t = 0.
(1)

•Myopic policy is selecting those N antennas with
the corresponding N largest entries in vector ωt
at the current time slot t.

Optimality of Myopic Policy

For the two-state positively correlated channel
model, in our POMDP-based antenna selection
problem, Myopic policy is optimal.

Simulation Results

Time-average data rate: R̄t , 1
t

∑t
τ=0R(sτ , aτ). Results are averaged over 100 Monte Carlo runs.

Perfect Two-state Channel Model

•Value iteration algorithm provides the optimal
solution.

• p01 = 0.2, p11 = 0.8, {α1, α2} = {
√

0.1,
√

10}.
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Figure 2: Time-average rate R̄3000 versus P/σ2.

Gauss-Markov Channel Model

The first-order Gauss-Markov channel model hi,t ,
ξhi,t−1 +

√
1− ξ2zi,t, for i = 1, ...,M.

•M = 200 , P/σ2 = 5 dB, hi,t ∼ CN (0, I) ,
zi,t ∼ CN (0, I), and σ2

h = 1.
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Figure 3: Average R̄3000 versus N .

Main Results

1 Figure 2: Myopic solution is optimal for the POMDP-based antenna selection problem.
2 Figure 3: Although only partial quantized CSI is available to the myopic policy, the performance of
this policy is significantly close to full un-quantized CSI antenna selection policy.

Myopic Policy Algorithm

Algorithm 1 Myopic policy-based antenna selection
Inputs: Set v based on ξ and σ2

h .
At each time slot t:
Input: ot
1: Quantize the elements of ot into α and β and

update the elements of ct.
2: Update ωt+1 (1).
3: For i = 1, 2, ∙ ∙ ∙ ,M , choose the i-th entry of

at+1 as

ai,t+1 =






1, if ωi,t+1 among the largest N entries of ωt+1,

0, otherwise.

Output: at+1

Our Contributions

•Formulating the massive antenna selection prob-
lem as a POMDP framework.

•Showing the optimality of Myopic policy for our
antenna selection POMDP-based problem, for
positively correlated two-state channel model.

•Proposing computationally affordable myopic
policy-based algorithm for massive antenna selec-
tion problem.

•Applying the proposed myopic policy algorithm
to the Rayleigh fading channel model to maximize
the expected long-term downlink data rate.


