Improved Probabilistic Context-free Grammars for

Haibo Cheng ${ }^{1}$ Wenting Li ${ }^{1}$ Ping Wang ${ }^{1}$ Kaitai Liang ${ }^{2}$

Introduction

Background:

1. Password
a. Dominant authentication method [1]
b. Including meaning segments.
2. Probabilistic context-free grammars (PCFGs)
a. Model password distributions.
b. Used for password strength met

Challenge: How to segment passwords?

1. Existing segmentation methods:
a. Simple segmentation based on char types (PCFG ${ }_{W}[2]$, PCFG $_{M}[3]$).
|| "password123" \rightarrow "password/123".

b. Improved segmentation with external dictionaries (e.g., PCFG $_{C}[4]$). "password" is identified as an English word;
But external dictionaries cannot fully and accurately cover the individual segments in
passwords, because passwords are different from other types of texts.
2. Inaccurate segmentation leads to misestimation of password probability.

Example: "jordan23" consists of Michael Jordan's name and his jersey number. Current

Contribution:

1. A word extraction method for passwords, extracting individual segments (called words) from passwords.
2. A new password model-WordPCFG, achieving better performance on guessing attacks.

Word extraction for passwords
Extraction is based on cohesion and freedom, inspired by a method for Chinese words [5].

1. Cohesion is the evaluation of a string's internal association.

$$
\begin{gathered}
\operatorname{Coh}(s)=\min _{s_{1} \| s_{2}=s} \operatorname{PMI}\left(s_{1} ; s_{2}\right), \\
\operatorname{PMI}\left(s_{1} ; s_{2}\right)=\log \frac{p\left(s_{1} \| s_{2}\right)}{p\left(s_{1}\right) \cdot p\left(s_{2}\right)} .
\end{gathered}
$$

2. Freedom is the evaluation of a string's independence from its context.

$$
\begin{aligned}
& \operatorname{Fdm}_{l}(s)=-\sum_{c \in \Sigma} \operatorname{Pr}(c \| s) \cdot \log \operatorname{Pr}(c \| s) \\
& \operatorname{Fdm}_{r}(s)=-\sum_{c \in \Sigma} \operatorname{Pr}(s \| c) \cdot \log \operatorname{Pr}(s \| c) \\
& \operatorname{Fdm}(s)=\min _{x \in\{r, l\}} \operatorname{Fdm}_{x}(s)
\end{aligned}
$$

We extract a substring s in passwords as a word if $\operatorname{Coh}(s) \geq T_{c}$ and $\operatorname{Fdm}(s) \geq T_{f}$, where T_{c} and T_{f} are empirically set to 0.01 and 1.0 , respectively.
${ }^{1}$ Peking University \quad 2Delft University of Technology

