

PEKING UNIVERSITY

Introduction

Background:

. Password

a. Dominant authentication method [1].

- b. Including meaning segments.
- 2. Probabilistic context-free grammars (PCFGs)
- a. Model password distributions.
- b. Used for password strength meters and password guessing attacks.

Challenge: How to segment passwords?

- Existing segmentation methods:
- **a.** Simple segmentation based on char types (PCFG_W [2], PCFG_M [3]).
 - "password123" \rightarrow "password/123". " $1qa2ws3ed" \rightarrow 1/qa/2/ws/3/ed"$.
 - This is inaccurate.
- b. Improved segmentation with external dictionaries (e.g., $PCFG_C$ [4]).
 - "password" is identified as an English word; "1qa2ws3ed" is identified as a keyboard pattern.

But external dictionaries cannot *fully* and *accurately* cover the individual segments in passwords, because passwords are different from other types of texts.

- 2. Inaccurate segmentation leads to misestimation of password probability.
 - Example: "jordan23" consists of Michael Jordan's name and his jersey number. Current PCFG models divide it to two independent segments and underestimate its probability.

Contribution:

- 1. A word extraction method for passwords, extracting individual segments (called words) from passwords.
- 2. A new password model—WordPCFG, achieving better performance on guessing attacks.

Word extraction for passwords

Extraction is based on *cohesion* and *freedom*, inspired by a method for Chinese words [5].

Cohesion is the evaluation of a string's internal association.

$$\operatorname{Coh}(s) = \min_{s_1 \mid \mid s_2 = s} \operatorname{PMI}(s_1; s_2),$$

where

$$PMI(s_1; s_2) = \log \frac{p(s_1 || s_2)}{p(s_1) \cdot p(s_2)}.$$

2. Freedom is the evaluation of a string's independence from its context.

$$\begin{aligned} \operatorname{Fdm}_{l}(s) &= -\sum_{c \in \Sigma} \Pr(c||s) \cdot \log \Pr(c||s), \\ \operatorname{Fdm}_{r}(s) &= -\sum_{c \in \Sigma} \Pr(s||c) \cdot \log \Pr(s||c), \\ \operatorname{Fdm}(s) &= \min_{x \in \{r, l\}} \operatorname{Fdm}_{x}(s). \end{aligned}$$

We extract a substring s in passwords as a word if $Coh(s) \ge T_c$ and $Fdm(s) \ge T_f$, where T_c and T_f are empirically set to 0.01 and 1.0, respectively.

Improved Probabilistic Context-free Grammars for Passwords Using Word Extraction

Wenting Li¹ Haibo Cheng¹ Ping Wang¹ Kaitai Liang²

¹Peking University

WordPCFG

- Extract words from passwords.
- 2. Segment passwords using the dictionary of words.
- **3**. Train the probabilities of segments and templates.

Figure 1. The training process for WordPCFG

Datasets

Passwords leaked from online services.

 Table 1. Password dataset information

aset	Unique	Total	Service
ckyou	14,326,970	32,581,870	Social Network
DWebhost	10,583,709	15,251,073	Web Hosting
sense	1,628,471	2,222,046	Online Surveys
DN	4,037,605	6,428,277	IT Community
donew	10,135,260	16,258,891	Online Gaming
owan	3,119,060	4,982,730	Gaming Portal

Results

 Table 2. Extracted words from passwords via our method

Туре	Examples
Keyboard pattern	qwerasdf 1q2w3e z
English word	superstar skateboard
Chinese pinyin	woaini woshi mima k
Name	steven wangming
Phrase	iloveu teamo byebye
Hybrid	kobe24 jordan23 we

Data Rock 000 Clixs CSE Doc Duo

²Delft University of Technology

zxcvbn 1qaz 123456 rd lucky dragoon baobei haha

e mylife howareyou /elcome2 4ever

To show the accuracy of WordPCFG, we leverage it for guessing attacks.

- 1. Attack: Crack passwords in descending order of probabilities.
- training and the rest for testing.
- 3. Performance:

 - improvement.

- from passwords.
- 2. Using this method can precisely segment passwords.
- guessing.

- 2012, pp. 553–567.
- mars". In: Proc. IEEE S&P 2009, pp. 391–405.
- 2014, pp. 689-704.
- guage encoders". In: Proc. IEEE S&P 2015, pp. 481–498.
- In: Proc. IEEE ICASSP 2001. Vol. 1, pp. 581–584.

Results

2. Experimental setting: randomly shuffle the dataset, and use one half for

a. WordPCFG achieves a significant improvement, when the guessing number climbs to 10^{10} . b. WordPCFG can crack 83.04%–95.47% passwords, achieving a 12.96%–71.84%

Figure 2. Rockyou

Conclusion

1. Our word extraction method can automatically extract individual segments

3. Thus, our WordPCFG achieves a significant improvement on password

References

[1] Joseph Bonneau et al. "The Quest to Replace Passwords: A Framework for Comparative Evaluation of Web Authentication Schemes". In: Proc. IEEE S&P

[2] Matt Weir et al. "Password Cracking Using Probabilistic Context-Free Gram-[3] Jerry Ma et al. "A Study of Probabilistic Password Models". In: Proc. IEEE S&P

[4] Rahul Chatterjee et al. "Cracking-resistant password vaults using natural lan-

[5] Shan He and Jie Zhu. "Bootstrap method for Chinese new words extraction".