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Abstract

Results & Discussion

Background:

Most clinical cochlear implants (CIs) extract and transmit coarse speech envelopes

to stimulate the auditory neurons that help recipients restore partial hearing ability.

The incomplete representation of the rich fine structures in speech has

significantly degraded the CI recipients’ ability in high-level perception, including

their speech understanding in noise.

What we do:

This paper proposed a neural network-based CI strategy, namely NNACE, which

has the following features:

• compatible with Nucleus ACE-based CI system and can serve as the modulator

to generate the electric stimuli

• more noise-robust

• might bear a certain degree of the temporal fine structures of speech

Results:

Subjective and objective evaluations with vocoder simulated speech show that

NNACE outperforms the other methods and further actual CI experiments are

warranted.
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Fig.1  Block diagram for the conventional ACE
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Fig.2  Systematic block diagram of the proposed NNACE
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Note: the loss function are calculated as follow equations 

𝑙𝑜𝑠𝑠𝑉𝑂𝐶 =
𝑛
𝑥(𝑡, 𝑛) − ො𝑥(𝑡, 𝑛)) 1 (3)

𝑙𝑜𝑠𝑠 = 𝑤𝐿𝑃𝑆 ∙ 𝑙𝐿𝑃𝑆 +𝑤𝐸𝑁𝑉 ∙ 𝑙𝐸𝑁𝑉 +𝑤𝑉𝑂𝐶 ∙ 𝑙𝑉𝑂𝐶 (4)

Where the weights  𝑤𝐿𝑃𝑆, 𝑤𝐸𝑁𝑉 𝑤𝑉𝑂𝐶 are set to be 0.7, 0.3, and 1

Experiments

SNR

• Train data: 0dB, 5dB, 10dB, and ∞
• Objective test data: -5dB, 0dB, 5dB, 10dB, and ∞
• Subjective test data: -5dB to 15dB, in steps of 2dB
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weighted spectral slope (WSS), the lower the better

normalized covariance metric (NCM), the higher the better

preference  test

speech reception threshold (SRT), the lower the better

THCHS-30 for NN training and objective test    
speech

MHINT-M for subjective test    

noise: speech shape noise (SSN), Babble, from NoiseX-92

Note: for training, each clean speech mix with noise at a randomly select SNR; 

for objective and subjective test, each clean speech mix with noise at all SNRs.

Baseline: ACE, wiener filtering as front-end to ACE (Wiener-ACE), DNN as front-

end to ACE (DNN-ACE).    

Pre-process: 128 points STST (16kHz sampling, frames size 8ms, shift 1ms)

Neural network setting: neural units as shown in Fig. 2 , Adam optimizer, learning 

rate  0.0001,

Fig.3  WSS scores and significance between systems, at SSN (left) and 

Babble (right) noises

Objective evaluation (with vocoder speech) results

Network complexity (model parameters)

DNN-ACE: 0.57Mb; NNACE: 0.49Mb

• The complexity of NNACE and DNN-ACE are comparable 

Fig.4  NCM scores and significance between systems, at SSN (left) and 

Babble (right) noises

Subjective evaluation (with vocoder speech) results

ACE Comparable NNACE

28.75% 41.25% 30%

Table1. Listeners’ preference on ACE- and NNACE-outputs in noise-free conditions
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• NNACE significantly outperforms ACE and Wiener-ACE in most noisy conditions

• The two NN-based systems have comparable performances at low SNRs

• NNACE significantly outperforms DNN-ACE at high SNRs

Fig.5  Mean SRTs (averaged over all participants) and significance between systems

• The subjects have the similar preference on ACE and NNACE in quiet.

• All SE systems significantly improve speech intelligibility in noisy envelopment

• NNACE outperforms Wiener-ACE

• Two NN-based systems obtained the similar performance in each noise type


