CONTINUOUS SPEECH SEPARATION WITH CONFORMER

Sanyuan Chen[‡], Yu Wu[†], Zhuo Chen[†], Jian Wu[†], Jinyu Li[†], Takuya Yoshioka[†], Chengyi Wang[†], Shujie Liu[†], Ming Zhou[†]

[†]Microsoft Corporation [‡]Harbin Institute of Technology

Video demo: https://www.youtube.com/watch?v=WRfPBnWc2qQ

Accepted by IEEE ICASSP 2021

Continuous Speech Separation

- To estimate individual speaker signals from a continuous speech input, where the source signals are fully or partially overlapped.
- Mixed signal: $y(t) = \sum_{s=1}^{5} x_s(t)$ s-th source signal: $x_s(t)$
- (STFTs) short-time Fourier transforms: $\mathbf{Y}^1(t, f) \longrightarrow \mathbf{X}_s(t, f)$
- Speech Separation Process:

1. $\mathbf{Y}(t, f) = \mathbf{Y}^1(t, f) \oplus \operatorname{IPD}(2) \ldots \oplus \operatorname{IPD}(C) \xrightarrow{\text{Separation model}} \mathbf{M}_s(t, f)$

2.
$$\mathbf{X}_s(t,f) = \mathbf{M}_s(t,f) \odot \mathbf{Y}^1(t,f)$$

Conformer speech separation model

- Conformer model:
 - a state-of-the-art ASR encoder architecture
 - efficiently capture both local and global context information
- Conformer block:

$$\hat{z} = \text{layernorm}(z + \frac{1}{2}\text{FFN}(z))$$

$$z' = \text{layernorm}(\text{selfattention}(\hat{z}) + \hat{z})$$

$$z'' = \text{layernorm}(\text{conv}(z') + z')$$

$$output = \text{layernorm}(z'' + \frac{1}{2}\text{FFN}(z'')),$$

• multi-head self-attention

$$\begin{aligned} \text{Multihead}(\mathbf{Q},\mathbf{K},\mathbf{V}) &= [\mathbf{H}_{1} \dots \mathbf{H}_{d_{head}}] \mathbf{W}^{head} \\ \mathbf{H}_{i} &= \text{softmax}(\frac{\mathbf{Q}_{i}(\mathbf{K}_{i} + \mathbf{pos})^{\intercal}}{\sqrt{d_{k}}}) \mathbf{V}_{i} \\ \end{aligned}$$

$$\begin{aligned} \text{Relative position embedding} \end{aligned}$$

Input

Frame sequence

Frame sequence

Frame sequence

- **Self-attention** considering the history information beyond the current chunk:
 - **Q** is obtained by the current chunk
 - K and V are the concatenations of the key and value in the previous and current chunks.

$$\mathbf{H}_{i} = \operatorname{softmax}\left(\frac{\mathbf{Q}_{i}(\mathbf{K}_{i} + \mathbf{pos})^{\mathsf{T}}}{\sqrt{d_{k}}}\right)\mathbf{V}_{i}$$

$$\mathbf{V}_{i}$$

$$\operatorname{softmax}\left(\frac{\mathbf{Q}_{i}(\mathbf{K}_{i} \oplus \mathbf{K}_{\operatorname{cache},i} + \mathbf{pos})^{\mathsf{T}}}{\sqrt{d_{k}}}\right)(\mathbf{V}_{i} \oplus \mathbf{V}_{\operatorname{cache},i})$$

Experiments

- Training data: 219 hours of artificially reverberated and mixed utterances that sampled randomly from WSJ1
- Evaluate data: LibriCSS (real recordings created by concatenating and mixing LibriSpeech utterances with various overlap ratios)
- Separation models:

Models	# Params	Layers	Hidden dimension	Attention heads	Attention dimension
BLSTM	21.80M	3	512	-	-
Transformer-base	21.90M	16	2048	4	256
Transformer-large	58.33M	18	2048	8	512
Conformer-base	22.07M	16	1024	4	256
Conformer-large	58.72M	18	1024	8	512

Experiments on LibriCSS

 Table 1. Utterance-wise evaluation for seven-channel and single-channel settings. Two numbers in a cell denote %WER of the hybrid ASR model used in LibriCSS [16] and E2E Transformer based ASR model [28]. 0S and 0L are utterances with short/long inter-utterance silence.

System	Overlap ratio in %						
System	0S	0L	10	20	30	40	
No separation [16]	11.8/5.5	11.7/5.2	18.8/11.4	27.2/18.8	35.6/27.7	43.3/36.6	
	Seven-channel Evaluation						
BLSTM	7.0/3.1	7.5/ 3.3	10.8/4.3	13.4/5.6	16.5/7.5	18.8/8.9	
Transformer-base	8.3/3.4	8.4/3.4	11.4/4.1	12.5/ 4.8	14.7/6.4	16.9/7.2	
Transformer-large	7.5/ 3.1	7.7/3.4	10.1/ 3.7	12.3/ 4.8	14.1/5.9	16.0/6.3	
Conformer-base	7.3/ 3.1	7.3/3.3	9.6 /3.9	11.9/ 4.8	13.9/6.0	15.9/6.8	
Conformer-large	7.2/ 3.1	7.5/3.3	9.6/3.7	11.3/4.8	13.7/5.6	15.1/6.2	
	Single-channel Evaluation						
BLSTM	15.8/6.4	14.2/5.8	18.9/9.6	25.4/15.3	31.6/20.5	35.5/25.2	
Transformer-base	13.2/5.5	12.3/5.2	16.5/8.3	21.8/12.1	26.2/15.6	30.6/19.3	
Transformer-large	13.0/ 5.3	12.4/5.1	15.5/ 7.4	20.1 /11.1	24.6/ 13.5	27.9/ 17.0	
Conformer-base	13.8/5.6	12.5/5.4	16.7/8.2	21.6/11.8	26.1/15.5	30.1/18.9	
Conformer-large	12.9 /5.4	12.2/5.0	15.1 /7.5	20.1/10.7	24.3 /13.8	27.6 /17.1	

Experiments on LibriCSS

System	Overlap ratio in %					
System	0S	0L	10	20	30	40
No separation [16]	15.4/12.7	11.5/5.7	21.7/17.6	27.0/24.4	34.3/30.9	40.5/37.5
	Seven-channel Evaluation					
BLSTM	11.4/6.0	8.4 /4.1	13.1/7.0	14.9/7.9	18.7/11.5	20.5/12.3
Transformer-base	12.0/5.6	9.1/4.4	13.4/6.2	14.4/6.8	18.5/9.7	19.9/10.3
Transformer-large	10.9 /5.4	8.8/ 4.0	12.6 /6.0	13.6/ 6.7	17.2 /9.3	18.9 /10.2
Conformer-base	11.1/5.6	8.7/ 4.0	12.8/6.1	13.8/ 6.7	17.6/9.4	19.6/10.4
Conformer-large	11.0/ 5.2	8.7/ 4.0	12.6/5.8	13.5 /6.8	17.6/ 9.0	19.6/ 10.0
Conformer _{xl} -base	11.4/5.4	8.7/4.1	13.2/6.2	13.6/ 6.7	17.8/9.5	20.0/10.8
Conformer _{xl} -large	11.0/ 5.2	8.8/4.1	12.9/ 5.8	13.7/ 6.7	17.5/9.4	19.8/10.6
	Single-channel Evaluation					
BLSTM	19.1/11.7	16.1/9.7	22.1/14.5	27.4/19.1	33.0/25.9	37.6/30.1
Transformer-base	13.8/7.1	11.5 /6.6	16.7/9.6	20.8/13.3	26.7/18.6	31.0/21.6
Transformer-large	13.0 /7.2	12.3/6.9	15.8 /9.5	19.8/12.2	25.3 /16.9	28.6/19.3
Conformer-base	14.1/7.7	13.0/7.1	17.4/10.6	21.9/13.7	27.4/18.7	32.0/22.4
Conformer-large	13.3/ 6.9	11.7/ 6.1	16.3/ 9.1	20.7/12.5	25.6/ 16.7	29.3/ 19.3

 Table 2. Continuous speech separation evaluation for seven-channel and single-channel settings.

Experiments on Real Conversation dataset

- Real Conversation dataset
 - an internal real conversation corpus which consists of 15.8 hours of single channel recordings of daily group discussions
 - Significantly more complex with respect to the acoustics, linguistics, and interspeaker dynamics.
- Improvements:
 - Increase the training data amount to 1500 hours
 - Merge two channel outputs were merged when a single active speaker was judged to be present
 - we used single speaker signals corrupted by background noise as a training target

Experiments

system	Data	WERR	SA-WERR
Original	N/A	0	0
BLSTM	219hr	-6.4%	-18.8%
Conformer-base	219hr	-7.2%	-6.3%
Conformer-large	219hr	-2.5 %	1.9 %
Conformer-base	1500hr	9.5%	8.8%
Conformer-base-merge	1500hr	8.4%	10.13%
Conformer-base-merge-nlabel	1500hr	11.8%	13.7%
Conformer-large-merge-nlabel	1500hr	8.08%	18.4%

 Table 3. Continuous evaluation on a real meeting dataset.

Conclusion

- We investigated the use of **Conformer** for continuous speech separation and achieve **the state of the art** on LibriCSS dataset for both the single-channel and multi-channel settings.
- We successfully achieve **significant gains** in the real meeting scenario, by introducing **several methods** (training data enlargement, mask merging scheme, and training target corruption)
- We explore **chunk-wise processing** to enable the Transformer family model to do streaming speech separation and enable the self-attention module to **consider the history information** beyond the current chunk with the previous state reused.

Demo

