DON'T SHOOT BUTTERFLY WITH RIFLES: MULTI-CHANNEL CONTINUOUS SPEECH SEPARATION WITH EARLY EXIT TRANSFORMER

Sanyuan Chen[‡], Yu Wu[†], Zhuo Chen[†], Takuya Yoshioka[†], Shujie Liu[†], Jinyu Li[†], Xiangzhan Yu[‡]

[†]Microsoft Corporation [‡]Harbin Institute of Technology

Accepted by IEEE ICASSP 2021

Multi-channel Continuous Speech Separation

- To estimate individual speaker signals from a continuous speech input, where the source signals are fully or partially overlapped.
- Mixed signal: $y(t) = \sum_{s=1}^{S} x_s(t)$ s-th source signal: $x_s(t)$
- (STFTs) short-time Fourier transforms: $\mathbf{Y}^1(t, f) \longrightarrow \mathbf{X}_s(t, f)$
- Speech Separation Process:

1. $\mathbf{Y}(t, f) = \mathbf{Y}^1(t, f) \oplus \operatorname{IPD}(2) \ldots \oplus \operatorname{IPD}(C) \xrightarrow{\text{Separation model}} \mathbf{M}_s(t, f)$

2.
$$\mathbf{X}_s(t, f) = \mathbf{M}_s(t, f) \odot \mathbf{Y}^1(t, f)$$

Transformer model

• Transformer block:

 $\mathbf{h}'_{i} = \operatorname{layernorm}(\mathbf{h}_{i-1} + \operatorname{MultiHeadAttention}(\mathbf{h}_{i-1}))$ $\mathbf{h}_{i} = \operatorname{layernorm}(\mathbf{h}'_{i} + \operatorname{FFN}(\mathbf{h}'_{i})),$

• Multi-head Self-attention

Multihead(
$$\mathbf{h_{i-1}}$$
) = [$\mathbf{H}_1 \dots \mathbf{H}_{d_{head}}$] \mathbf{W}^{head}
where \mathbf{H}_j = softmax $\left(\frac{\mathbf{Q}_j(\mathbf{K}_j + \mathbf{pos})^{\mathsf{T}}}{\sqrt{d_k}}\right) \mathbf{V}_j$
Relative position embedding

Transformer model

- Prior work shows that a **deeper structure** (12 or more) yields superior performance.
- Problems:
 - Heavy run-time cost
 - "overthinking" problem:

a shallow Transformer is sufficient to handle the nonoverlapped speech well and that a deep Transformer could potentially degrade the speech estimation.

• Early Exit mechanism:

 makes predictions at an earlier layer for less overlapped speech while using higher layers for speech with a high overlap rate

Early Exit Transformer model

• Early Exit mechanism:

- makes predictions at an earlier layer for less overlapped speech while using higher layers for speech with a high overlap rate
- attach a mask estimator to each transformer layer.
- dynamically stop the inference if the predictions from two consecutive layers are sufficiently similar.

Input

Early Exit Transformer model

- During inference:
 - we calculate the normalized Euclidean Distance distⁱ between the estimated masks of the (i-1)-th layer and the i-th layer.
 - Given a pre-defined threshold τ, if distⁱ < τ for the two consecutive layers, we terminate the inference process and output the estimated masks of i-th layer as the final prediction masks.
- During training:
 - For each Estimator^{*i*}, we apply PIT (permutation invariant training) to minimize Loss^{*i*} which is the Euclidean distance between the reference and the mask predicted by *i*-th layer.
 - The final loss is the weighted average function:

$$Loss = \frac{\sum_{i=1}^{I} i \cdot Loss^{i}}{\sum_{i=1}^{I} i}$$

Experiments on LibriCSS dataset

Table 1: Utterance-wise evaluation. Two numbers in a cell denote %WER of the **hybrid SR model** used in LibriCSS [18] and **end-to-end transformer** based SR model [16]. 0S: 0% overlap with short inter-utterance silence. 0L: 0% overlap with a long inter-utterance silence.

System	Avg. exit	Avg. exit Speed- Overlap ratio in %						
	layer	up	0S	0L	10	20	30	40
No separation [18]	-	-	11.8/5.5	11.7/5.2	18.8/11.4	27.2/18.8	35.6/27.7	43.3/36.6
BLSTM [13]	-	-	7.0/3.1	7.5/ 3.3	10.8/4.3	13.4/5.6	16.5/7.5	18.8/8.9
Transformer [13]	16.0	$1.00 \times$	8.3/3.4	8.4/3.4	11.4/4.1	12.5/ 4.8	14.7/6.4	16.9/7.2
Early Exit Transformer ($\tau = 0$)	16.0	$0.92 \times$	8.9/3.4	9.4/3.6	12.3/4.2	14.7/5.0	15.1/ 6.2	16.5/6.6
Early Exit Transformer ($\tau = 8e - 5$)	6.9	$2.60 \times$	7.6/ 3.2	7.7/ 3.3	10.1/ 3.8	12.4/ 4.8	14.4/6.2	16.4 /6.9
Early Exit Transformer ($\tau = 1.5e - 4$)	4.8	$4.08 \times$	7.8/ 3.2	7.6/ 3.4	9.8/3.8	12.2 /5.1	14.7/6.7	17.9/7.8
Early Exit Transformer ($\tau = \infty$)	2.0	$6.59 \times$	7.1/3.1	7.3/3.3	10.0/4.4	13.6/6.1	17.0/8.4	20.5/10.4

Experiments on LibriCSS dataset

Avg. exit Speed-**Overlap ratio in %** System 0S0L 10 20 30 40 layer up 40.5/37.5 No separation [18] 15.4/12.7 11.5/5.7 21.7/17.6 27.0/24.4 34.3/30.9 -BLSTM [13] 11.4/6.0 8.4/4.1 13.1/7.014.9/7.9 18.7/11.5 20.5/12.3 _ Transformer [13] 12.0/5.6 9.1/4.4 18.5/9.7 16.0 $1.00 \times$ 13.4/6.2 14.4/6.8 19.9/**10.3** 14.1/6.2 10.3/4.6 17.2/7.117.3/7.5 23.5/12.0 Early Exit Transformer ($\tau = 0$) 16.0 $0.76\times$ 23.0/10.8 Early Exit Transformer ($\tau = 1e - 4$) 7.5 11.3/5.4 8.9/4.4 13.8/6.7 17.8/9.3 $1.47\times$ 12.7/6.0 **19.7**/10.5 Early Exit Transformer ($\tau = 1.5e - 4$) 5.8 $1.88 \times$ 11.5/5.2 8.9/4.3 12.6/6.0 13.7/6.9 17.6/9.5 19.6/10.3 Early Exit Transformer ($\tau = 2e - 4$) 5.2 $2.08\times$ 11.2/5.6 8.8/4.5 12.7/6.3 13.9/7.2 18.5/9.5 **19.6**/10.9 Early Exit Transformer ($\tau = \infty$) 2.0 14.7/14.6 8.7/6.9 16.1/13.7 17.8/15.2 22.5/18.2 24.8/18.9 $4.74\times$

Table 2: Continuous speech separation evaluation

Experiments on LibriCSS

Fig. 2: The average exit layer of Early Exit Transformer across different testsets with different threshold τ for the utterance-wise evaluation.

Conclusion

- We elaborate an early exit mechanism for Transformer based multi-channel speech separation, which aims to address the "overthinking" problem and accelerate the inference stage simultaneously.
- We not only **speed up inference**, but also **improves the performance** on small-overlapped testsets.
- Regarding single channel evaluation, we observe negative results since the task is too challenging to handle.