

Short-time Spectral Aggregation for Speaker Embedding

Youzhi TU and Man-Wai MAK

Dept. of Electronic and Information Engineering, The Hong Kong Polytechnic University, Hong Kong SAR of China

> ICASSP'21 6-11 June 2021

Contents

- 1. Speaker embedding networks
- 2. Conventional pooling methods
- 3. Short-time spectral pooling (STSP)
- 4. Experimental setup
- 5. Results
- 6. Conclusions

Speaker Embedding Networks

- X-vector extractor is a popular baseline
 - Frame-level layers: Time-delay neural networks (TDNNs), ResNets, DenseNets, Res2Nets, etc.
 - Pooling layer: Aggregate frame-level information
 - Utterance-level layers: Fully-connected (FC) layers

Each layer except the pooling layer is followed by a batch normalization layer and an ReLU layer.

Pooling Methods

- Input: Temporal feature maps $\mathbf{X} \in \mathbb{R}^{C \times T}$ at the output of the last frame-level layer, C and T are the number of channels and frames, respectively
- Output: Aggregated representation *z* at utterance-level
- Statistics pooling: z is the concatenation of channel-wise mean and standard deviation (std)

Pooling Methods

- Attentive pooling (AP): Attend to discriminative frames
 - The aggregated representation *z* is the concatenation of weighted channel-wise mean and standard deviation
 - The attention weight vector (for a single head) $w \in \mathbb{R}^{1 \times T}$ is learned from an attention network and applied to the features of each channel
 - For multi-head attentive pooling, *z* is the concatenation of the aggregated representations corresponding to different heads

Motivation

- Limitation of statistics pooling
 - Using means and standard deviations is not enough to preserve sufficient speaker information for statistics pooling
 - From a Fourier perspective, statistics pooling only exploits the information in the 0-th frequency component (DC component) in the spectral domain
- Solution
 - Extract multiple spectral components of the spectral representation (besides the DC component) as aggregated embeddings

Short-time Spectral Pooling (STSP)

Relation to Statistics Pooling

• Short-time Fourier transform (STFT) of the *c*-th channel feature $\mathbf{x}_c = \{x_c(n)\}_{n=0}^{N-1}$ (*N* is the number of frames)

$$X_{c}(m,k) = \sum_{n=0}^{N-1} x_{c}(n) \omega(n-mS) e^{-j\frac{2\pi}{L}kn}, \quad k = [0,L-1]$$

 $\omega(\cdot)$: window function, *L*: STFT length, *S*: step size of the sliding window *m*: index of windowed segments, *k*: index of spectral components

• When we use $\omega(n) = 1$ (rectangular window) and S = L = 1 (the step size and STFT length are both 1), we have

 $\hat{X}_{c}(0) = 1/M \sum_{m=0}^{M-1} X_{c}(m, 0) = 1/N \sum_{n=0}^{N-1} x_{c}(n) \triangleq \operatorname{mean}(\mathbf{x}_{c}),$

 $P_c(0) = 1/M \sum_{m=0}^{M-1} |X_c(m, 0)|^2 = 1/N \sum_{n=0}^{N-1} [x_c(n)]^2 \triangleq \operatorname{var}(\mathbf{x}_c) + [\operatorname{mean}(\mathbf{x}_c)]^2.$

- Under above conditions, using means and stds for statistics pooling is an analogy to using the DC components $\hat{X}_c(0)$ and $P_c(0)$ for STSP
- Because STSP uses more frequency components of $P_c(k)$ (k > 0) for aggregation, it can preserve more information than statistics pooling

Experiments

- Compare statistics pooling, attentive pooling and STSP on VoxCeleb1-test, VOiCES19-dev and VOiCES19-eval
- Speaker embedding network training
 - 40-dimensional filter bank features
 - VoxCeleb1&2-dev for VOiCES19 (2,105,949 utterances from 7,185 speakers) and VoxCeleb1-dev for VoxCeleb1 (2,092,009 utterances from 5,984 speakers)
 - Baseline: Standard x-vector network
 - Attention network: FC (500) + ReLU + FC (*H*), *H* is the number of heads
 - STSP: Rectangular window function, STFT length and window step size were 16

Experiments

- PLDA training
 - VoxCeleb1: Clean VoxCeleb1-dev (1,240,651 utterances)
 - VOiCES19: Concatenated speech with the same video session augmented with reverberation and noise (334,776 utterances)
 - Pre-processing: Center + LDA (200 for Voxceleb1 and 150 for VOiCES19) + whitening + length normalization
- Score normalization (only for VOiCES19)
 - Cohort: Longest two utterances of each speaker in the PLDA training data

Results on Voxceleb1-test

H: Number of heads in attentive pooling

R: Number of spectral components of $P_c(k)$ in STSP

	Stats pooling	AP (H=1)	АР (<i>H</i> =2)	АР (<i>H</i> =3)	AP (<i>H</i> =4)	STSP (R=1)	STSP (R=2)	STSP (R=3)	STSP (<i>R</i> =4)
EER	2.13	2.05	1.96	1.99	2.01	2.17	1.91	1.82	1.93
minDCF	0.227	0.221	0.207	0.218	0.232	0.221	0.199	0.210	0.220

Results on VOiCES19-dev

H: Number of heads in attentive pooling

R: Number of spectral components of $P_c(k)$ in STSP

	Stats pooling	АР (<i>H</i> =1)	АР (<i>H</i> =2)	АР (<i>H</i> =3)	АР (<i>H</i> =4)	STSP (R=1)	STSP (R=2)	STSP (R=3)	STSP (<i>R</i> =4)
EER	2.32	2.40	2.10	2.09	2.12	2.25	2.05	2.16	2.08
minDCF	0.273	0.291	0.270	0.270	0.292	0.280	0.283	0.266	0.275

Results on VOiCES19-eval

H: Number of heads in attentive pooling

R: Number of spectral components of $P_c(k)$ in STSP

	Stats pooling	AP (H=1)	АР (<i>H</i> =2)	АР (<i>H</i> =3)	АР (<i>H</i> =4)	STSP (R=1)	STSP (R=2)	STSP (R=3)	STSP (<i>R</i> =4)
EER	6.19	6.02	5.72	5.79	5.92	6.20	5.67	5.76	5.84
minDCF	0.467	0.465	0.468	0.484	0.514	0.469	0.478	0.473	0.488

Conclusions

- Proposed a new pooling method for speaker embedding from a Fourier perspective
- STSP is able to aggregate the information in higher frequency components (besides the DC component), making it preserve more speaker information than statistics pooling
- Generally, STSP outperforms attentive pooling and statistics pooling on Voxceleb1 and VOiCES19

References

- D. Snyder, D. Garcia-Romero, G. Sell, D. Povey, and S. Khudanpur, "X-vectors: Robust DNN embeddings for speaker recognition," in Proc. International Conference on Acoustics, Speech, and Signal Processing, 2018, pp. 5329–5333.
- Y. Zhu, T. Ko, D. Snyder, B. Mak, and D. Povey, "Self-attentive speaker embeddings for text-independent speaker verification," in Proc. Annual Conference of the International Speech Communication Association, 2018, pp. 3573–3577.
- 3. O. Rippel, J. Snoek, and R. P. Adams, "Spectral representations for convolutional neural networks," in Advances in Neural Information Processing Systems, 2015, pp. 2449–2457.

Thank you!