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Speaker Embedding Networks 
• X-vector extractor is a popular baseline 

• Frame-level layers: Time-delay neural networks (TDNNs), ResNets, 
DenseNets, Res2Nets, etc. 

• Pooling layer: Aggregate frame-level information 

• Utterance-level layers: Fully-connected (FC) layers 
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Each layer except the pooling layer is followed by a batch normalization 

layer and an ReLU layer. 
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Pooling Methods 
• Input: Temporal feature maps 𝐗 ∈ ℝ𝐶×𝑇at the output of the 

last frame-level layer, 𝐶 and 𝑇 are the number of channels 
and frames, respectively 

• Output: Aggregated representation 𝒛 at utterance-level 

• Statistics pooling: 𝒛 is the concatenation of channel-wise 
mean and standard deviation (std) 
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Pooling Methods 
• Attentive pooling (AP): Attend to discriminative frames 

• The aggregated representation 𝒛 is the concatenation of weighted 
channel-wise mean and standard deviation 

• The attention weight vector (for a single head) 𝒘 ∈ ℝ1×𝑇 is 
learned from an attention network and applied to the features of 
each channel 

• For multi-head attentive pooling, 𝒛 is the concatenation of the 
aggregated representations corresponding to different heads 
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Motivation 
• Limitation of statistics pooling 

• Using means and standard deviations is not enough to preserve 
sufficient speaker information for statistics pooling 

• From a Fourier perspective, statistics pooling only exploits the 
information in the 0-th frequency component (DC component) in 
the spectral domain 

• Solution 

• Extract multiple spectral components of the spectral 
representation (besides the DC component) as aggregated 
embeddings 
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Short-time Spectral Pooling (STSP) 
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Relation to Statistics Pooling 
• Short-time Fourier transform (STFT) of the 𝑐-th channel feature 

𝐱𝑐 = *𝑥𝑐(𝑛)+𝑛=0
𝑁−1 (𝑁 is the number of frames) 

 

 

 
• When we use 𝜔 𝑛 = 1 (rectangular window) and 𝑆 = 𝐿 = 1 (the step 

size and STFT length are both 1), we have 

 

 
• Under above conditions, using means and stds for statistics pooling is an 

analogy to using the DC components 𝑋 𝑐 0  and 𝑃𝑐 0  for STSP 

• Because STSP uses more frequency components of 𝑃𝑐 𝑘  (𝑘 > 0) for 
aggregation, it can preserve more information than statistics pooling 
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𝑚=0 = 1 𝑁  𝑥𝑐(𝑛)

𝑁−1
𝑛=0 ≜ mean 𝐱𝑐 , 

 

𝑃𝑐 0 = 1 𝑀  𝑋𝑐(𝑚, 0) 2𝑀−1
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𝜔(∙): window function, 𝐿: STFT length, 𝑆: step size of the sliding window  

𝑚: index of windowed segments, 𝑘: index of spectral components  
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Experiments 
• Compare statistics pooling, attentive pooling and STSP on 

VoxCeleb1-test, VOiCES19-dev and VOiCES19-eval 

• Speaker embedding network training  

• 40-dimensional filter bank features  

• VoxCeleb1&2-dev for VOiCES19 (2,105,949 utterances from 7,185 
speakers) and VoxCeleb1-dev for VoxCeleb1 (2,092,009 utterances 
from 5,984 speakers) 

• Baseline: Standard x-vector network 

• Attention network: FC (500) + ReLU + FC (𝐻), 𝐻 is the number of 
heads 

• STSP: Rectangular window function, STFT length and window step 
size were 16 
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Experiments 
• PLDA training  

• VoxCeleb1: Clean VoxCeleb1-dev (1,240,651 utterances) 

• VOiCES19: Concatenated speech with the same video session 
augmented with reverberation and noise (334,776 utterances) 

• Pre-processing: Center + LDA (200 for Voxceleb1 and 150 for 
VOiCES19) + whitening + length normalization 

• Score normalization (only for VOiCES19) 

• Cohort: Longest two utterances of each speaker in the PLDA 
training data  
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Results on Voxceleb1-test 
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𝐻: Number of heads in attentive pooling 
𝑅: Number of spectral components of 𝑃𝑐 𝑘  in STSP 

Stats 
pooling 

AP 
(𝐻=1) 

AP 
(𝐻=2) 

AP 
(𝐻=3) 

AP 
(𝐻=4) 

STSP 
(𝑅=1) 

STSP 
(𝑅=2) 

STSP 
(𝑅=3) 

STSP 
(𝑅=4) 

EER 2.13 2.05 1.96 1.99 2.01 2.17 1.91 1.82 1.93 

minDCF 0.227 0.221 0.207 0.218 0.232 0.221 0.199 0.210 0.220 
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Results on VOiCES19-dev 
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𝐻: Number of heads in attentive pooling 
𝑅: Number of spectral components of 𝑃𝑐 𝑘  in STSP 

Stats 
pooling 

AP 
(𝐻=1) 

AP 
(𝐻=2) 

AP 
(𝐻=3) 

AP 
(𝐻=4) 

STSP 
(𝑅=1) 

STSP 
(𝑅=2) 

STSP 
(𝑅=3) 

STSP 
(𝑅=4) 

EER 2.32 2.40 2.10 2.09 2.12 2.25 2.05 2.16 2.08 

minDCF 0.273 0.291 0.270 0.270 0.292 0.280 0.283 0.266 0.275 
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Results on VOiCES19-eval 
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𝐻: Number of heads in attentive pooling 
𝑅: Number of spectral components of 𝑃𝑐 𝑘  in STSP 

Stats 
pooling 

AP 
(𝐻=1) 

AP 
(𝐻=2) 

AP 
(𝐻=3) 

AP 
(𝐻=4) 

STSP 
(𝑅=1) 

STSP 
(𝑅=2) 

STSP 
(𝑅=3) 

STSP 
(𝑅=4) 

EER 6.19 6.02 5.72 5.79 5.92 6.20 5.67 5.76 5.84 

minDCF 0.467 0.465 0.468 0.484 0.514 0.469 0.478 0.473 0.488 
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Conclusions 
• Proposed a new pooling method for speaker embedding 

from a Fourier perspective 

• STSP is able to aggregate the information in higher frequency 
components (besides the DC component), making it preserve 
more speaker information than statistics pooling 

• Generally, STSP outperforms attentive pooling and statistics 
pooling on Voxceleb1 and VOiCES19 
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Thank you! 
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