Introduction	Design of Database	Details of Dataset	Experiments and Results	Conclusions	References

NISP: A Multilingual Multi-accent Dataset for Speaker Profiling

Authors

Shareef Babu Kalluri¹, Deepu Vijayasenan¹, Sriram Ganapathy², Ragesh Rajan M¹, Prashant Krishnan² {shareefbabu1, deepu.senan, sriram.iisc, mrageshrajan, gillyprash29}@gmail.com

¹National Institute of Technology Karnataka, Surathkal, India, ²Learning and Extraction of Acoustic Patterns (LEAP) lab, Indian Institute of Science, Bangalore, India

ICASSP-21, 6-11 June 2021
Toronto, Ontario, Canada

Introduction	Design of Database	Details of Dataset	Experiments and Results	Conclusions O	References 00
Outline					

Introduction

- Motivation
- Contribution

2 Design of Database

- Recording Protocol
- Speech Data
- Potential Applications

3 Details of Dataset

*Experiments and Results*Baseline Experiments

Conclusions

Introduction	Design of Database	Details of Dataset	Experiments and Results	Conclusions	References
•0					
Motivation					

Motivation

- Many of the available datasets have partial information for speaker profiling applications.
- Datasets are limited to monolingual Indian languages.
- Estimating the physical parameters like height and age of a speaker helps in applications like forensics and commercial scenarios.
 - Eg. In voice surveillance applications, predicting the speaker meta data from the short chunks of speech data is crucial for biometric evidence generation.

Introduction	Design of Database	Details of Dataset	Experiments and Results	Conclusions	References
00					
Contribution					

Contribution

- A new dataset (NISP) has created which has speech data from five (Hindi, Kannada, Malayalam, Tamil, Telugu) different Indian languages along with English.
- The metadata information for speaker profiling applications like
 - Linguistic information L1, L2
 - 2 Regional information geographic location of the native place
 - Opposite the second state of a speaker Height, age, Shoulder size, Weight.
- This dataset is publicly made available in the following address, https://github.com/iiscleap/NISP-Dataset

Introduction	Design of Database	Details of Dataset	Experiments and Results	Conclusions	References
	000				
Recording Protoco	1				

Recording Protocol

- The speech data was collected high quality microphone (with Scarlett solo studio, CM25 a large diaphragm condenser microphone).
- Sampling rate 44.1 kHz with a bit-rate 16 bits per sample.
- Audio recording setup "Speech Recorder" ^a and with Focusrite Scarlett solo studio audio recording device by connecting it to a laptop.

^aThis software is available in this address, https://www.bas.uni-muenchen.de/forschung/Bas/software/speechrecorder/

Introduction	Design of Database ○●○	Details of Dataset	Experiments and Results	Conclusions ○	References 00
Speech Data					

Speech Data

- The text data used in the reading task L1 language as well as English.
- The text provided to speakers daily news articles
 - Unique sentences without any contextual continuity.
 - This setting was made to avoid any prosodic continuity in the reading task.
 - ② Continuous short story section to have contextual continuity.
 - Common sentences English (2 TIMIT sa1 and sa2 sentences and 3 general news article sentences); L1 2 common sentences.
- Overall, each subject provided with
 - 20-25 unique sentences in L1 and English
 - 20-25 contextual sentences in L1 and English,
 - **5** common sentences for English, and 2 sentences from L1.

Introduction	Design of Database	Details of Dataset	Experiments and Results	Conclusions	References
	000				
Potential Applicati	ions				

Potential Applications

- Physical Parameter Estimation
- Accent & Language Identification
- Speaker Recognition
- Speech Recognition

Introduction	Design of Database 000	Details of Dataset ●000	Experiments and Results	Conclusions O	References

Distribution of speakers per language

Table 1: Distribution of native languages', and the number of male and female speakers in the NISP dataset

Sl.No.	Native Language	Male	Female	Total
1.	Hindi	76	27	103
2.	Kannada	33	27	60
3.	Malayalam	35	25	60
4.	Telugu	35	22	57
5.	Tamil	40	25	65
Total Speakers		219	126	345

Introduction	Design of Database 000	Details of Dataset ○●○○	Experiments and Results	Conclusions O	References 00

Distribution of duration of speech data & No. of Utterances per language

Shareef Babu Kalluri (NITK)

Shareef Babu Kalluri (NITK)

10/

00	OCO OC	ails of Dataset ○●	Experime 000	ents and Results	Conclusions	00
Table 2	2: Gender wise statist	ics of each	physical	parameter	t in the NISP	dataset
	Physical	Min	Max	Mean	Standard	
	Characteristic				Deviation	
		Male Sp	peakers			
	Height (cm)	151.0	191.0	171.6	6.7	•
	Shoulder width (cn	<i>i</i>) 32.0	55.0	44.7	3.2	
	Weight (kg)	43.4	116.5	69.4	11.9	
	Age (y)	18.0	47.5	24.4	5.6	
		Female S	Speakers			
	Height (cm)	143.0	180.0	158.9	6.8	
	Shoulder width (cn	<i>i</i>) 30.0	53.0	39.7	3.4	
	Weight (kg)	34.1	86.2	56.5	10.5	
	Age (y)	18.3	46.5	25.1	6.1	
	Ma	ale and Fen	nale Spea	akers		
	Height (cm)	143.0	191.0	166.9	9.1	
	Shoulder width (cn	<i>i</i>) 30.0	55.0	42.9	4.0	
	Weight (kg)	34.1	116.5	64.7	13.0	
	Age (y)	18.0	47.5	24.7	5.8	

Shareef Babu Kalluri (NITK)

< U > < 🗗

э

Introduction	Design of Database	Details of Dataset	Experiments and Results	Conclusions O	References 00
Baseline Experime	ents				

Dataset split

- The training split 210 (134 M + 76 F) speakers with 17161 (10911 M + 6933F) utterances
- The test split 135 (85 M + 50 F) speakers with 11107 (6933 M + 4174 F) utterances.

Error Metrics

- Mean Absolute Error (MAE).
- Target Mean Predictor (TMP) estimating the target with training data mean without considering the speech data.

Introduction	Design of Database	Details of Dataset 0000	Experiments and Results	Conclusions O	References
Baseline Experime	nts				

Baseline Experiment

- We perform the physical parameter estimation task using three different features namely, mel filter bank features, formants and harmonics [1].
- Computed the first order statistics (Fstat) from the 40 Mel filter bank features using a 256 component diagonal covariance Gaussian Mixture Model Universal Background Model (GMM-UBM).
- The GMM was trained 20 MFCC $+\delta + \delta = 60$ dimensional features.
- The formant and fundamental frequency features percentiles (5,25,50,75 and 95) are computed.
- The harmonic features including both frequency locations (F-loc) and amplitude features (Amp) same set of percentiles are computed.
- These computed statistics from each individual feature are given to linear Support Vector Regression (SVR) model to predict each physical parameter.
- x-vectors extended TDNN model trained on voxceleb data [2].

Introduction	Design of Database	Details of Dataset	Experiments and Results	Conclusions ○	References 00	
Baseline Experiments						

Baseline Results

Table 3: Comparison of three feature combination – Comb -3 (Fstats + formant + harmonic features (amplitude + frequency locations)) with default predictor and x-vector model

Height (cm) Estimation				Weight (kg) Estimation		
	Male	Female	All	Male	Female	All
	MAE	MAE	MAE	MAE	MAE	MAE
TMP	5.22	5.30	7.14	7.74	7.88	9.08
Comb-3	5.16	5.30	5.11	7.06	6.84	7.06
x-vector	5.69	6.04	5.85	8.37	7.56	8.03
Shoulder (cm) Estimation				Age	e(y) Estima	ation
TMP	1.98	2.44	2.99	4.40	4.39	4.42
Comb-3	1.93	2.47	2.11	3.80	3.55	3.76
x-vector	2.25	3.15	2.61	4.01	4.94	4.39

Introduction	Design of Database	Details of Dataset	Experiments and Results	Conclusions	References
00	000	0000	000		00

Conclusions

- A multilingual speaker profiling dataset recorded in five different Indian native languages (Hindi, Kannada, Malayalam, Tamil, and Telugu) along with English language.
- This dataset has linguistic information, regional information and physical characteristics of a speaker useful in commercial and forensic applications of speaker profiling.
- Overall, this dataset has 56.86 hours (24.83 –L1, 32.03 English) of speech data.
- For speaker profiling tasks on this dataset, the baseline results performs better in MAE measure when compared to the TMP.

Introduction	Design of Database	Details of Dataset	Experiments and Results	Conclusions ○	References 00
Referenc	es				

- Shareef Babu Kalluri, Deepu Vijayasenan, and Sriram Ganapathy. Automatic speaker profiling from short duration speech data. *Speech Communication*, 121:16–28, 2020.
- [2] David Snyder, Daniel Garcia-Romero, Gregory Sell, Alan McCree, Daniel Povey, and Sanjeev Khudanpur. Speaker recognition for multi-speaker conversations using x-vectors. In *IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, pages 5796–5800. IEEE, 2019.

Introduction	Design of Database	Details of Dataset	Experiments and Results	Conclusions	References
					00

Acknowledgements

- We thank the SERB under grant no: EMR/2016/007934 for funding to create the database.
- We thank student volunteers who helped in creating this dataset.

Introduction	Design of Database	Details of Dataset	Experiments and Results	Conclusions O	References ○●

