

NISP: A Multi-lingual Multi-accent Dataset for Speaker Profiling

Shareef Babu Kalluri 1 , Deepu Vijayasenan 1 , Sriram Ganapathy 2 , Ragesh Rajan M 1 , Prashant Krishnan 2

¹National Institute of Technology Karnataka, Surathkal, India,

²Learning and Extraction of Acoustic Patterns (LEAP) lab, Indian Institute of Science, Bangalore, India

{shareefbabu1,deepu.senan,sriram.iisc,mrageshrajan,gillyprash29}@gmail.com

Motivation

- Many of the available datasets have partial information for speaker profiling applications.
- Datasets are limited to monolingual Indian languages.
- Estimating the physical parameters like height and age of a speaker helps in applications like forensics and commercial scenarios.

Contribution

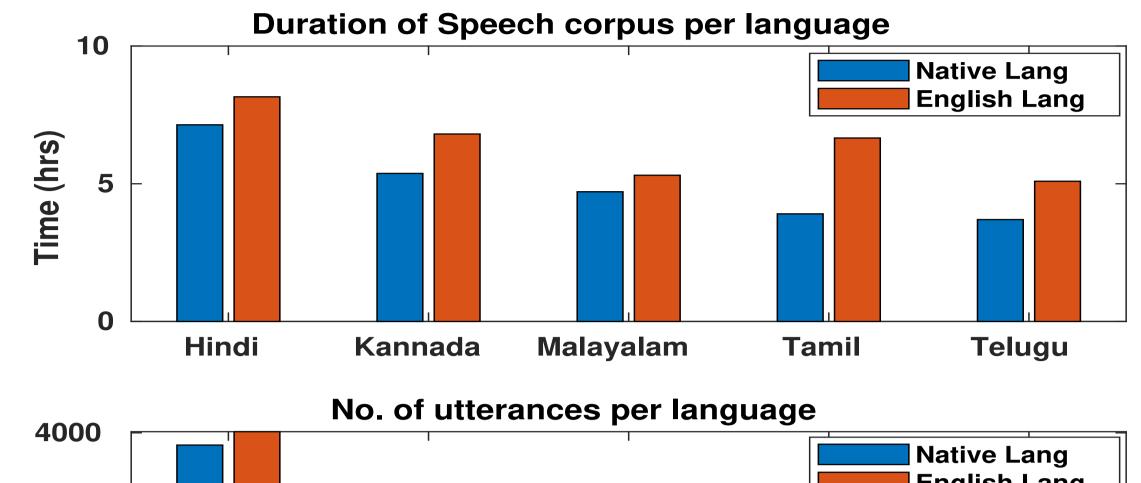
- A new dataset (NISP) has created which has speech data from five (Hindi, Kannada, Malayalam, Tamil, Telugu) different Indian languages along with English.
- The metadata information for speaker profiling applications like
- 1. Linguistic information L1, L2
- 2. Regional information geographic location of the native place
- 3. Physical characteristics of a speaker Height, age, Shoulder size, Weight.
- This dataset is publicly made available in the following address, https://github.com/iiscleap/NISP-Dataset

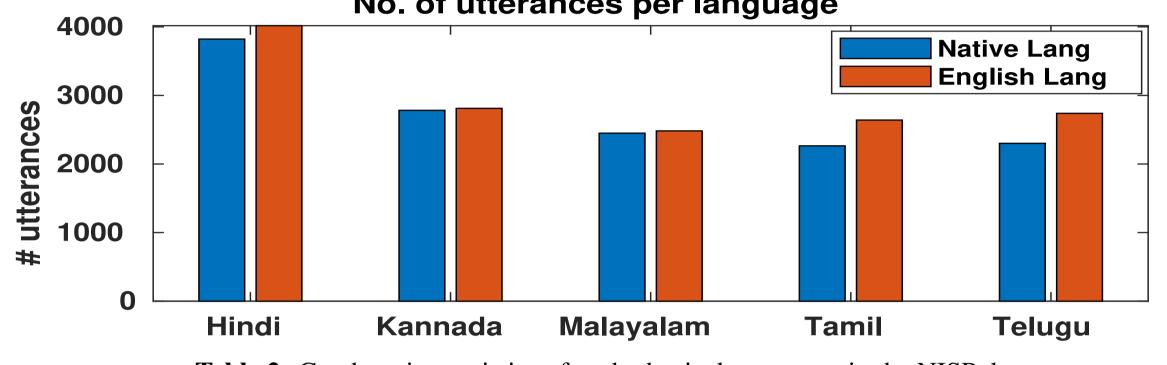
Design of Database

Speech Data

- The speech data was collected high quality microphone (with Scarlett solo studio, CM25 a large diaphragm condenser microphone)
- Sampling rate 44.1 kHz with a bit-rate 16 bits per sample.
- The text data used in the reading task L1 language as well as English.
- The text provided to speakers daily news articles
- 1. Unique sentences without any contextual continuity.
- This setting was made to avoid any prosodic continuity in the reading task.
- 2. Continuous short story section to have contextual continuity.
- 3. Common sentences English (2 TIMIT sa1 and sa2 sentences and 3 general news article sentences); L1 - 2 common sentences.
- Overall, each subject provided with
- 1. 20-25 unique sentences in L1 and English
- 2. 20-25 contextual sentences in L1 and English,
- 3. 5 common sentences for English, and 2 sentences from L1.

Table 1: Distribution of native languages', and the number of male and female speakers in the NISP dataset


Sl.No.	Native Language	Male	Female	Total
1.	Hindi	76	27	103
2.	Kannada	33	27	60
3.	Malayalam	35	25	60
4.	Telugu	35	22	57
5.	Tamil	40	25	65
Total Speakers		219	126	345


Recording Protocol

• Audio recording setup – "Speech Recorder" and with Focusrite Scarlett solo studio audio recording device by connecting it to a laptop.

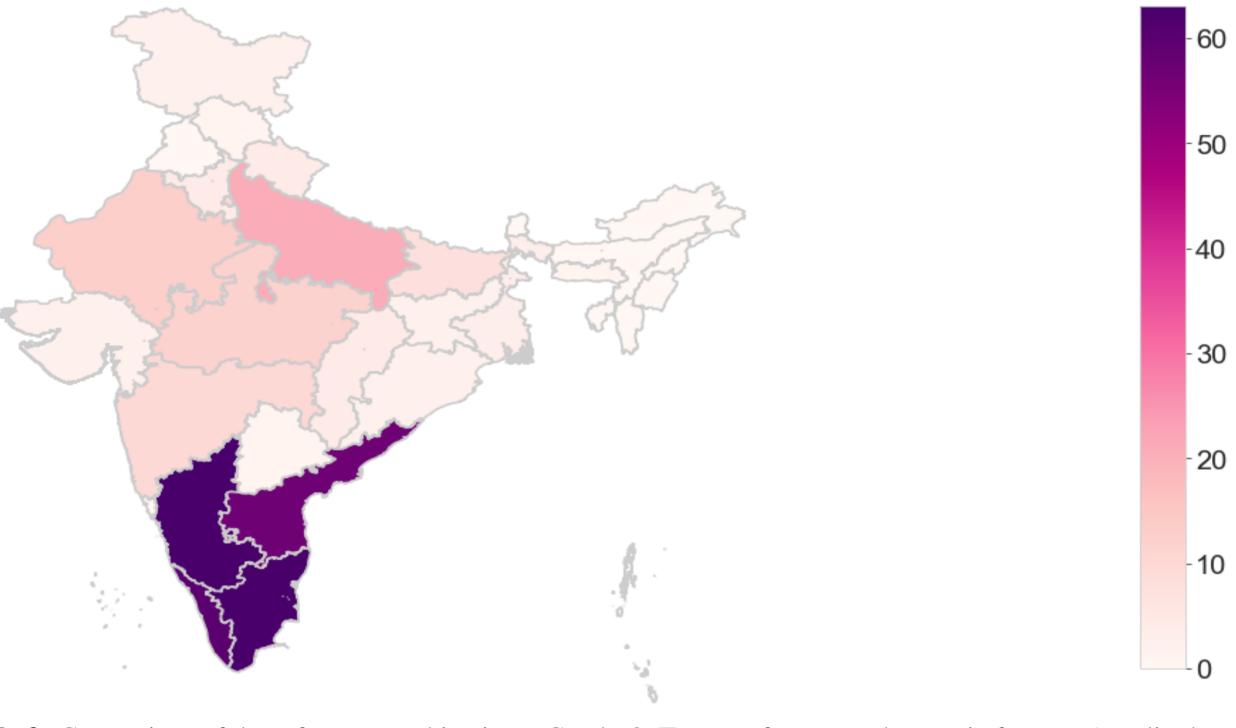
Potential Applications

- Physical Parameter Estimation
- Accent & Language Identification
- Speaker Recognition
- Speech Recognition

Table 2: Gender wise statistics of each physical parameter in the NISP dataset

Physical Characteristic	Min	Max	Mean	Standard Deviation					
Male Speakers									
Height (cm)	151.0	191.0	171.6	6.7					
Shoulder width (cm)	32.0	55.0	44.7	3.2					
Weight (kg)	43.4	116.5	69.4	11.9					
Age (y)	18.0	47.5	24.4	5.6					
Female Speakers									
Height (cm)	143.0	180.0	158.9	6.8					
Shoulder width (cm)	30.0	53.0	39.7	3.4					
Weight (kg)	34.1	86.2	56.5	10.5					
Age (y)	18.3	46.5	25.1	6.1					
Male and Female Speakers									
Height (cm)	143.0	191.0	166.9	9.1					
Shoulder width (cm)	30.0	55.0	42.9	4.0					
Weight (kg)	34.1	116.5	64.7	13.0					
Age (y)	18.0	47.5	24.7	5.8					

Experiments and Results


- The training split 210 (134 M + 76 F) speakers with 17161 (10911 M + 6933F) utterances
- The test split 135 (85 M + 50 F) speakers with 11107 (6933 M + 4174 F) utterances.
- Error Metrics Root Mean Square Error, Mean Square Error.
- Target Mean Predictor (TMP) estimating the target with training data mean without considering the speech data.

Baseline Experiments

- We perform the physical parameter estimation task using three different features namely, mel filter bank features, formants and harmonics.
- Computed the first order statistics (Fstat) from the 40 Mel filter bank features using a 256 component diagonal covariance Gaussian Mixture Model Universal Background Model (GMM-UBM).

- The GMM was trained 20 MFCC + δ + δ = 60 dimensional features.
- The formant and fundamental frequency features percentiles (5,25,50,75 and 95) are computed.
- The harmonic features including both frequency locations (F-loc) and amplitude features (Amp) - same set of percentiles are computed
- These computed statistics from each individual feature are given to linear Support Vector Regression (SVR) model to predict each physical parameter.

Number of Speakers per Region

Table 3: Comparison of three feature combination – Comb -3 (Fstats + formant + harmonic features (amplitude + frequency locations)) with default predictor and x-vector model

Height (cm) Estimation				Weight (kg) Estimation			
	Male	Female	All	Male	Female	All	
	MAE	MAE	MAE	MAE	MAE	MAE	
TMP	5.22	5.30	7.14	7.74	7.88	9.08	
Comb-3	5.16	5.30	5.11	7.06	6.84	7.06	
x-vector	5.69	6.04	5.85	8.37	7.56	8.03	
Shoulder (cm) Estimation				Age(y) Estimation			
TMP	1.98	2.44	2.99	4.40	4.39	4.42	
Comb-3	1.93	2.47	2.11	3.80	3.55	3.76	
x-vector	2.25	3.15	2.61	4.01	4.94	4.39	

Conclusion

- A multilingual speaker profiling dataset recorded in five different Indian native languages (Hindi, Kannada, Malayalam, Tamil, and Telugu) along with English language.
- This dataset has linguistic information, regional information and physical characteristics of a speaker – useful in commercial and forensic applications of speaker profiling.
- Overall, this dataset has 56.86 hours (24.83 –L1, 32.03 English) of speech data.
- For speaker profiling tasks on this dataset, the baseline results performs better in MAE measure when compared to the TMP.

References

[1] Shareef Babu Kalluri, Deepu Vijayasenan, and Sriram Ganapathy. Automatic speaker profiling from short duration speech data. Speech Communication, 121:16–28, 2020.