
Context

The vast majority of neural networks 
architectures is based on representation of 
real valued features.

                                                                      

z = x + jy, 𝑧 ∈ ℂ, 𝑥 & 𝑦 ∈ ℝ

Liouville’s theorem: 
“Given 𝑓(𝑧) analytic (differentiable) at all 𝑧 ∈ 𝐶 and bounded, 

then 𝑓(𝑧) is a constant function”

Wirtinger Calculus:
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Gradient definition: 

𝛻𝑧𝑓 = 2
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𝜕 ҧ𝑧
for 𝑓: 𝐶 → 𝑅

Liouville theorem forces the activation functions to be a constant for the gradient to exist
(needed for backpropagation). This is of course unacceptable and therefore, a new
definition of the gradient, with the help of Wirtinger calculus, is created to solve this
problem.

Results

Can complex-valued neural networks exploit phase information to achieve better 
results than real-valued neural networks?
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Experimental Setup

Model Mean (%) Median (%) Q1 (25%) Q2 (75%) Min (%) Max (%)

CV-MLP 96.20±0.04 96.16±0.11 96.06 96.43 95.65 96.60

RV-MLP 94.51±0.04 94.48±0.06 94.38 94.59 94.02 95.03

Conclusions
• Skewed data (high difference between 

mean and median)
• CV-MLP achieves in average ~2% more 

accuracy than RV-MLP
• CVNN took more epochs to converge
• Non-overlapping results

• CV-MLP minimum value was higher 
than RV-MLP maximum value

There are two possible sources for 
non-circularity: x and y have unequal 

variances, and/or are x and y are 
correlated [5]

Akira Hirose has mentioned the importance of circularity1 for CVNN in 
[1] section 1.4.2 and [3] section 3.2.2

ρ = 0.3
ρ = -0.3

Abstract – This paper shows the benefits of using Complex-Valued Neural Networks (CVNN) on
classification tasks for non-circular complex-valued datasets. Motivated by radar and especially
Synthetic Aperture Radar (SAR) applications, we propose a statistical analysis of fully
connected feed-forward neural networks performance in the cases where real and imaginary
parts of the data are correlated through the non-circular property.
In this context, comparisons between CVNNs and their real-valued equivalent models are
conducted, showing that CVNNs provide better performance for multiple types of non-
circularity. Notably, CVNNs statistically perform less overfitting and higher accuracy than its
equivalent RVNN.
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𝑓: ℂ → ℝ; 𝑔(𝑧) = 𝑟 𝑧 + 𝑗𝑠 𝑧 ; 𝑟, 𝑠: ℂ → ℝ, 𝑧 ∈ ℂ

• Loss function: 
• Categorical cross-

entropy
• Stochastic Gradient 

Descent
• Learning rate: 0.1

• Weight initialization: 
• Glorot Uniform [7]
• Bias initialization: 

Zeros
• 300 epochs

• Batch Size: 100

•30 train trials for each model 
(CV-MLP & RV-MLP) with the 
same dataset.

•20000 examples (10000 for 
each class)

•80% train set
•20% test set

• Input size of 128 independent 
non-circular random variables.

•RV-MLP gets real and 
imaginary part separately.

*DEMR, ONERA, Université Paris-Saclay, 
F-91123, Palaiseau, France

†SONDRA, CentraleSupelec, Université Paris-Saclay
Gif-sur-Yvette, France

CV-MLP RV-MLP

Input Size 128 256

Hidden Layer 1 64 128

Activation 
function

ReLU type A [6]:
𝑅𝑒𝐿𝑈 ℝ𝑒 𝑧
+ 𝑗𝑅𝑒𝐿𝑈(𝕀𝑚 𝑧 )

ReLU:
𝑅𝑒𝐿𝑈(𝑥)

Output size 2 2

Output activation Softmax to the absolute 
value

Softmax

Mathematical Background

Dataset

Model Architecture
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Example of two input vectors

Without Dropout:
• CVNN presented less overfitting
• CVNN presented more outliers
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Validation loss without dropout
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Complex-Valued Neural Network for Classification Perspectives: An Example on Non-Circular Data

Complex random variable Z = 𝑋 + 𝑗𝑌 is circular 

if 𝑍 has the same distribution as 𝑒𝑗𝜙Z
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Motivation
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