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Complex-Valued Neural Network for Classification Perspectives: An Example on Non-Circular Data
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Abstract — This paper shows the benefits of using Complex-Valued Neural Networks (CVNN) on
classification tasks for non-circular complex-valued datasets. Motivated by radar and especially
Synthetic Aperture Radar (SAR) applications, we propose a statistical analysis of fully
connected feed-forward neural networks performance in the cases where real and imaginary

parts of the data are correlated through the non-circular property.

In this context, comparisons between CVNNs and their real-valued equivalent models are
conducted, showing that CVNNs provide better performance for multiple types of non-
circularity. Notably, CVNNs statistically perform less overfitting and higher accuracy than its

equivalent RVNN.
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Context Motivation
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Can complex-valued neural networks exploit phase information to achieve better

results than real-valued neural networks?

Mathematical Background

Liouville’s theorem:

“Given f (z) analytic (differentiable) at all z € C and bounded,

then f(z) is a constant function”

Liouville theorem forces the activation functions to be a constant for the gradient to exist
(needed for backpropagation). This is of course unacceptable and therefore, a new
definition of the gradient, with the help of Wirtinger calculus, is created to solve this

problem.
Wirtinger Calculus: Gradient definition:
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Chain Rule:
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Experimental Setup

Model Architecture + Loss function:
e Categorical cross-
entropy
Input Size 128 256 e Stochastic Gradient
Hidden Layer 1 64 128 DrEsEEl

* Learning rate: 0.1

ACtIV?tIOn RelLU type A [6]: RelU: - Weteh Tt alETe:
function ReLU(Re{z}) ReLU(x) .
+ jReLU(Im{z}) e Glorot Uniform [7]

J * Bias initialization:
Output size 2 2 768105
Output activation Softmax to the absolute Softmax * 300 epochs

value e Batch Size: 100

Dataset

Akira Hirose has mentioned the importance of circularity® for CVNN in
[1] section 1.4.2 and [3] section 3.2.2

Complex random variable Z = X + jY is circular

Example of two input vectors . . :
P P if Z has the same distribution as e/?7

3 A * * Class 0
M Classl . .
0, — 1z) =0 - ziscircular
29 £ 6,|# 0> znot circular
* 7, 2 E[(Z —E[Z])?] = 0f — 0f + 2j
= 1- Tz = E[( [Z])*] = ox — oy + 2joxy
> * 07 = 0% + of
% ol i
E There are two possible sources for
iy non-circularity: x and y have unequal
Y variances, and/or are x and y are
. correlated [5]
. 0=0.3 Oxy

I R L I R A _ _ Elxy]
5 52 41 o0 1 3 \_Lp=-o.3 p_axay_ /\/E[xZ]E[yz]
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Results

Validation accuracy with dropout
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(CV-MLP & RV-MLP) with the
same dataset.
* 20000 examples (10000 for
each class)
* 80% train set
* 20% test set
* Input size of 128 independent
non-circular random variables.
* RV-MLP gets real and

uartile . .
imaginary part separately.

r

0 50 100 150 200 250
epoch

CV-MLP 96.20+0.04 96.16+0.11 96.06
RV-MLP 94.51+0.04 94.48+0.06 94.38
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* CVNN presented less overfitting
* CVNN presented more outliers
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Conclusions
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 CV-MLP achieves in average ~2% more
accuracy than RV-MLP
* CVNN took more epochs to converge
* Non-overlapping results
e CV-MLP minimum value was higher

than RV-MLP maximum value
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