FULLY-NEURAL APPROACH TO VEHICLE WEIGHING AND STRAIN PREDICTION ON BRIDGES USING WIRELESS ACCELEROMETERS

T. Kawakatsu^{1,2}, K. Aihara¹, A. Takasu¹, J. Adachi¹,

H. Wang³, T. Nagayama³.

¹ National Institute of Informatics, ² Preferred Networks, ³ The University of Tokyo.

INTRODUCTION

SERIOUS BRIDGE DETERIORATION PROBLEM

• Highly automated bridge health monitoring system is required!

PROBLEM OF HEAVY VEHICLES

Heavy vehicles may cause serious damage to bridge components:

WEIGH-IN-MOTION (WIM)

• WIM estimates axle loads of running vehicles without stopping them.

• There are 2 major types, Pavement (P-) WIM and Bridge (B-) WIM:

OUR GOAL IS

• to realize a simple but accurate BWIM system with 3 advantages:

Easy to install and maintain

Obtains bridge models automatically

Robust in situations where vehicles run side by side

CONVENTIONAL B-WIM

STRAIN-BASED B-WIM

• When a vehicle crosses a bridge, the bridge deforms in response:

AXLE-LOAD ESTIMATION

By decomposing strain signal, individual axle loads can be obtained: 6 3rd 2nd 3rd 5 0 strain -1 reaction force 4 2nd 1st **Axle** load Height 1st girder S 3 -2 = -3 1 -4 0 -5 -2 0 2 3 4 0 4 6 8 time [s] time [s]

DIFFICULTY OF STRAIN MEASUREMENT

B-WIM uses multiple strain sensors for accurate load estimation, but

Labor at a high place

- Paint scratching
- Careful attachment

Sensor failure

- Frequent repair
- Reconfiguration

Power consumption

- Resistive bridge
- Wired strain gauges

ACCELERATION-BASED B-WIM

• Use girder acceleration signal to obtain girder global displacement:

INTEGRATION APPROACH

INCLINATION APPROACH

DIFFICULTY IN REAL PRACTICE

• These approaches require artisan skill for system (re-) initialization:

FULLY-NEURAL B-WIM

BRIDGE MODELING BY NEURAL NETWORK

• Vehicle properties may be estimated using a neural bridge model:

ENCODER-DECODER NETWORK ARCHITECTURE

• Encoder estimates axle loads and decoder estimates strain signals:

VEHICLE LINK SYSTEM (VLS)[†]

• Axle load information can be collected from WIM at distant location:

 † Takaya Kawakatsu, Kenro Aihara, Atsuhiro Takasu, Jun Adachi

"Fully-Neural Approach to Heavy Vehicle Detection on Bridges Using a Single Strain Sensor" ICASSP 2020

FULLY-NEURAL BRIDGE WEIGH-IN-MOTION[†]

• Use VLS to train many B-WIMs by ground truth from a few P-WIMs:

[†] Takaya Kawakatsu, Kenro Aihara, Atsuhiro Takasu, Jun Adachi "Fully-Neural Approach to Heavy Vehicle Detection on Bridges Using a Single Strain Sensor" ICASSP 2020

EXPERIMENTAL RESULTS

TARGET BRIDGE AND ACCELERATION SIGNALS

• We installed 9 accelerometers on girder G2 on expressway bridge:

2019-01-30 13:01:49.72

LOAD ESTIMATION USING ACCELEROMETERS

LOAD ESTIMATION USING STRAIN SENSOR

STRAIN ESTIMATION USING ACCELEROMETERS

CONCLUSION

CONCLUSION

- CNN simulates girder dynamics using real noisy acceleration data.
- CNN learns real traffic situations using cameras and distant P-WIM.
- Experimental results demonstrate the detectability of axle weights.
- This should lead to low-cost WIM that is easy to install and maintain.

OUR PREVIOUS WORK

Deep Sensing Approach to Single-Sensor Vehicle Weighing System on Bridges

• IEEE Sensors Journal, Volume 19, Issue 1, 2019.

Fully-Neural Approach to Heavy Vehicle Detection on Bridges Using a Single Strain Sensor

• 45th IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2020.

Deep Learning Approach to Modeling Bridge Dynamics Using Cameras and Sensors

• 10th International Conference on Bridge Maintenance, Safety and Management (IABMAS), 2020.

Adversarial Media-Fusion Approach to Strain Prediction for Bridges

• 8th International Conference on Pattern Recognition Applications and Methods (ICPRAM), 2019.

Adversarial Spiral Learning Approach to Strain Analysis for Bridge Damage Detection

• 20th International Conference on Big Data Analytics and Knowledge Discovery (DaWaK), 2018.

Deep Sensing Approach to Single-Sensor Bridge Weighing in Motion

• 9th European Workshop on Structural Health Monitoring (EWSHM), 2018.

Traffic Surveillance System for Bridge Vibration Analysis

• 4th International Workshop on Information Integration in Cyber Physical Systems (IICPS), 2017.

28) THANK YOU!