Predictive Coding For Lossless Dataset Compression

Unordered source coding in theory and practice

Traditional Source Coding

Consider a sequence (X_1, X_2, \ldots, X_n) with $X_1, X_2, \ldots, X_n \stackrel{iid}{\sim} P_X$

Given a random variable over an alphabet \mathcal{X} , a **lossless source code (l.s.c.)** consists of functions $f : \mathcal{X} \to \{0, 1\}^*$ and $g : \{0, 1\}^* \to \mathcal{X}$ such that g(f(x)) = x

To encode symbols with few bits, we usually minimize the average code word length:

 $M^*(P_X) \triangleq \min \{ \mathbb{E} \left[l(f(X)) \right] \mid (f,g) \text{ is a prefix-free l.s.c.} \}$

Motivation

Many large datasets in research, archives, ML training, etc.

*										
								× .		
Access Reduky Labors Relevable										
Second and a local second			10.0				10000	_	Distant of	
The Deser-										
	0.0	194	1007	1.00		10.0				
	1.04	11.84	1.01	1.95	1101	1.005				
	201	1100	1007	- 201	2,215					
	1.00		1.910	1.00	1.16	1.01				
	1.85		1.21			1.0.0	1.06			
	1.00		10.7	- 110	11.0	1002				
UNKER		- 54	0.00	1.00	314	4.50				
		- 24								
	1.81									
0.0.0	1.04		A(3)		100					
DOM & A.A.					CL					
	4.06		1.401			1.41				
	1.04			1.490	104					
			0.000	- 04	100					
				- 00	104	1.00				
	1.00		0.001	1.16	10.00	- CHE				
	1.00	100	0.000	- 016	10.0	0.000				
	1 108	196	0.00	- 00	100	C00				
	2.81	100	1.11	1.16	1000					
	1.01		100	1.00	1.0	1.00				
	1.00	1.01	1.81	1.00	201	0.00				

Traditional compression algorithms operate on stream data. If we don't need to preserve order on elements, we can save space and bandwidth with a "dataset" compression algorithm.

Dataset Source Coding

Consider a "dataset", i.e. a set of samples where order doesn't matter: $\{X_1, X_2, \ldots, X_n\}$

Define a **lossless dataset source code (l.d.s.c)** $f: \mathcal{X}^n \to \{0, 1\}^*$ and $g: \{0, 1\}^* \to \mathcal{X}^n$ such that $g(f(x^n)) = \pi \circ x^n$ for all $x^n \in \mathcal{X}^n$ where π is a permutation.

For a l.d.s.c. we minimize $M_n^*(P_X) \triangleq \min \left\{ \mathbb{E}\left[l(f(X^n)) \right] \mid (f,g) \text{ is a prefix-free l.d.s.c.} \right\}.$

Note: dataset code length \leq sequence code length

Theoretical Results

Theorem 1 (I.d.s.c. via data structures):

Let $\widetilde{X}^n = \pi \circ X^n$, where π is a permutation drawn uniformly at random. Moreover, let S be such that 1) $S \to X^n \to \widetilde{X}^n$ and $X^n \to S \to \widetilde{X}^n$ 2) $H(S|X^n) = H(S|\widetilde{X}^n) = 0$ Then $M^*(P_S) = M_n^*(P_X)$,

$$\begin{split} H(S) &\leq M_n^*(P_X) < H(S) + 1 \\ \text{and} \ H(S) &= I(X^n; \widetilde{X}^n) \leq \min\{|\mathcal{X}| \log_2(n+1), n \log_2 |\mathcal{X}|\} \end{split}$$

Madeleine Barowsky, Alexander Mariona, and Flavio du Pin Calmon Harvard University

Experiments

#3992

Idea: in many data, the "features" are not truly independent from each other. For example, pixels in an image.

Predictive coding: instead of encoding every value, can encode some values, a model to obtain adjacent ones, and the "error" between predictions and true value.

Combining ideas from **Theorem 1** and JPEG-LS:

- 1. Build nearest neighbors graph of dataset
- 2. Obtain reordering by traversing a MST
- 3. Train predictor on context from *within* images and *adjacent* images
- 4. Entropy coding

