Orthogonal Sparse Eigenvectors: A Procrustes Problem Konstantinos Benidis, Ying Sun, Prabhu Babu, Daniel P. Palomar

Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong

Background & Motivation

- ▶ Principal Component Analysis (PCA) is a popular technique for data analysis and dimensionality reduction.
- \triangleright Captures directions of maximum variance of the data.
- \triangleright These directions (eigenvectors PC loadings) form an orthonormal basis.
- \blacktriangleright Principal components (PCs) are uncorrelated.
- \blacktriangleright Principal components are, in general, combinations of all the input variables.
- \triangleright PC loadings are dense vectors.
- \blacktriangleright In many applications the variables have a physical meaning (e.g. gene expression).
- \triangleright A sparse basis would help significantly the interpretability of the result.
- \blacktriangleright Trade-offs:
- \blacktriangleright Explained variance.
- \triangleright Orthogonality of the PC loadings.
- \triangleright Uncorellatedness of the PCs.

 \blacktriangleright The orthogonal sparse eigenvector extraction translates to the following optimization problem:

x

subject to $\;\;\;\bm{U}^T\bm{U}=\bm{I}_q,$

where $\bm{U} \in \mathbf{R}^{m \times q}$ denotes the eigenvectors, $\bm{S} \in \mathbf{R}^{m \times m}$ the sample covariance matrix and $\|\boldsymbol{u}_i\|_0$ the number of nonzero elements of the *i*-th eigenvector. $\boldsymbol{D} = \overset{\dots}{\mathsf{Diag}}(\boldsymbol{d}) \in \mathsf{R}_{+}^{q \times q}$ and ρ_i are regularization parameters.

- \triangleright Without the sparsity (red) term it is the typical eigenvector extraction problem.
- Discontinuous, non-differentiable, non-concave objective function.
- **Non-convex set.**

 \triangleright We approximate the ℓ_0 norm with a smooth continuous and differentiable function (Song et al. [2015]):

Related Work

- \blacktriangleright Existing methods:
	- \blacktriangleright All the existing algorithms sacrifice orthogonality for a sparse result.
	- Benchmark: GPower (Journée et al. [2010]).
- \triangleright Goal: Extract sparse eigenvectors that preserve the orthogonality property.

Problem Formulation

$$
\begin{array}{ll}\text{maximize} & \mathsf{Tr}\left(\boldsymbol{U}^T \boldsymbol{S} \boldsymbol{U} \boldsymbol{D}\right) - \sum_{i=1}^q \rho_i ||\boldsymbol{u}_i||_0\\ \end{array}
$$

Approximate Smooth Formulation

$$
\mathop{{\rm maximize}}_U
$$

$$
\begin{array}{ll}\text{maximize} & \text{Tr}\left(\boldsymbol{U}^T \boldsymbol{S} \boldsymbol{U} \boldsymbol{D}\right) - \sum_{j=1}^q \rho_j \sum_{i=1}^m g_p^{\epsilon}(u_{i,j}) \\ \text{subject to} & \boldsymbol{U}^T \boldsymbol{U} = \boldsymbol{I}_q, \end{array}
$$

where

$$
g_p^{\epsilon}(x) = \begin{cases} \frac{x^2}{2\epsilon(p+\epsilon)\log(1+1/p)}, & |x| \leq \epsilon, \\ \frac{\log(\frac{p+|x|}{p+\epsilon}) + \frac{\epsilon}{2(p+\epsilon)}}{\log(1+1/p)}, & |x| > \epsilon, \end{cases}
$$

with $0 < p \leq 1$ and $0 < \epsilon \ll 1$. \blacktriangleright The problem is still non-convex. \triangleright Use the MM framework.

0 0.2 0.4 > 0.6 0.8 1 1.2 .

,

,

 $f\left(\mathbf{x}\right)$

$$
\forall \mathbf{x}^{(k)} + \mathbf{d} \in \mathcal{X}.
$$

• **Iteratively maximize** $g(\mathbf{x}|\mathbf{x}^{(k)})$
instead of maximizing $f(\mathbf{x})$.
Proposition
The objective function of (1) is lowerbounded by the surrogate function

$$
g\left(\boldsymbol{U}|\boldsymbol{U}^{(k)}\right)=2\mathsf{Tr}\left(\left(\boldsymbol{G}^{(k)}-\boldsymbol{H}^{(k)}\right)
$$

$$
^{\left(k\right) }\mathbf{ }^{T}\boldsymbol{U}\bigg) +c,
$$

es the Stiefel manifold I The following form:

$$
\boldsymbol{G}^{(k)} = \boldsymbol{S}\boldsymbol{U}^{(k)}\boldsymbol{D},
$$
\n
$$
\boldsymbol{H}^{(k)} = \left[\text{diag}\left(\boldsymbol{w}^{(k)} - \boldsymbol{w}_{\text{max}}^{(k)} \otimes \mathbf{1}_m\right) \text{vec}\left(\boldsymbol{U}^{(k)}\right)\right]_{m \times q},
$$
\n(3)

Michel Journée, Yurii Nesterov, Peter Richtárik, and Rodolphe Sepulchre. Generalized power method for sparse principal component analysis. The Journal of Machine Learning Research, 11:517–553, March 2010. Junxiao Song, Prabhu Babu, and Daniel P Palomar. Sparse generalized eigenvalue problem via smooth optimization. *IEEE Transactions on Signal* Processing, 63(7):1627–1642, April 2015.

Jonathan H Manton. Optimization algorithms exploiting unitary constraints. IEEE Transactions on Signal Processing, 50(3):635-650, March 2002.

 $\bm{H}^{(k)},\bm{H}^{(k)}$ with $(2), (3),$ $(2), (3),$ $(2), (3),$ $(2), (3),$ respectively and right singular vectors , rely

\triangleright Construct a covariance matrix Σ through the eigenvalue decomposition

► Generate 500 data matrices $\boldsymbol{A}\in\mathbf{R}^{m\times n}$ by drawing $n=50$ samples from a zero-mean normal distribution with covariance matrix Σ , i.e., $\boldsymbol{a}_i \sim \mathcal{N}(\boldsymbol{0}, \Sigma)$, for $i = 1, \ldots, n$.

 \triangleright We have proposed a new algorithm (IMRP) for sparse eigenvalue extraction. Inlike all the other existing methods, the resulting sparse eigenvectors preserve the orthogonality

 \triangleright IMRP improves the chance of exact recovery of the eigenvectors and matches the cumulative

$$
w_i^{(k)} = \begin{cases} \frac{\rho_i}{2\epsilon(p+\epsilon)\log(1+1/p)}, & |u_i^{(k)}| \leq \epsilon, \\ \frac{\rho_i}{2\log(1+1/p)|u_i^{(k)}|\left(|u_i^{(k)}|+p\right)}, & |u_i^{(k)}| > \epsilon, \end{cases}
$$

, and \boldsymbol{w} (k) $\mathbf{R}_{\text{max}}^{(k)} \in \mathbf{R}_{+}^{q}$, with w (k) $\mathcal{L}_{\max,i}^{(\kappa)}$ being the maximum weight that corresponds to the i -th eigenvector. Equality is achieved when $\boldsymbol{U} = \boldsymbol{U}^{(k)}.$

$$
\arg \max_{\boldsymbol{U} \in V_{m,q}} \text{Tr}\left(\left(\boldsymbol{G}^{(k)} - \boldsymbol{H}^{(k)}\right)^T \boldsymbol{U}\right) = \arg \min_{\boldsymbol{U} \in V_{m,q}} \|\boldsymbol{U} - \left(\boldsymbol{G}^{(k)} - \boldsymbol{H}^{(k)}\right)\|_F^2
$$

where
$$
V_{m,q} = \{ U \in \mathbb{R}m \times q | U^T U = I_q \}
$$
 denotes
\n• The optimization problem of every MM iteration to

minimize
$$
||U -
$$

subject to $U^T U$

$$
\left(\boldsymbol{G}^{(k)} - \boldsymbol{H}^{(k)}\right) \|_{F}^{2}
$$
\n(4)

$$
\text{subject to} \quad \boldsymbol{U}^T \boldsymbol{U} = \boldsymbol{I}_q.
$$
\n
$$
\text{The optimization problem (4) is a rectangular Procrustes problem.}
$$

Lemma: Rectangular Procrustes

An optimal solution of the optimization problem (4) is the left and right singular vectors of the matrix $\left(\bm{G}^{(k)}-\bm{H}^{(k)}\right)$

$$
\boldsymbol{U}^{\star} = \boldsymbol{V}_L \boldsymbol{V}_R^T
$$
, where \boldsymbol{V}_L , \boldsymbol{V}_R are
- $\boldsymbol{H}^{(k)}$, respectively (Manton

Algorithm

Algorithm 1 IMRP - Iterative Minimization of Rectangular Procrustes

1: Set
$$
k = 0
$$
, choose $U^{(0)} \in \{U : U^T U = I_q\}$
2: repeat:

$$
2: \text{repeat:}
$$

3: Compute
$$
G^{(k)}
$$
, $H^{(k)}$ with (2)

4: Compute
$$
\boldsymbol{v}_L
$$
, \boldsymbol{v}_R , the left of $(\boldsymbol{G}^{(k)} - \boldsymbol{H}^{(k)})$, respectively, respectively, respectively.

$$
\begin{array}{ll}\n\text{5.} & \mathbf{6} \\
\text{6.} & k \leftarrow k + 1\n\end{array}
$$

7: until convergence

8: return
$$
U^{(k)}
$$

Numerical Results

- $\Sigma = V$ diag $(\lambda) V^T$.
- \blacktriangleright The first q eigenvectors have a pre-specified sparse structure.
- \blacktriangleright We consider a setup with $m = 500, q = 5$.
-

we estimate $q = 5$ sparse eigenvectors.

Conclusion

- property.
- percentage of explained variance (CPEV).

References