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Background & Motivation

I Principal Component Analysis (PCA) is a popular technique for data analysis and
dimensionality reduction.
I Captures directions of maximum variance of the data.
I These directions (eigenvectors - PC loadings) form an orthonormal basis.
I Principal components (PCs) are uncorrelated.

I Principal components are, in general,
combinations of all the input variables.
I PC loadings are dense vectors.
I In many applications the variables have a

physical meaning (e.g. gene expression).
I A sparse basis would help significantly the

interpretability of the result.

I Trade-offs:
I Explained variance.
I Orthogonality of the PC loadings.
I Uncorellatedness of the PCs.
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Related Work

I Existing methods:
I All the existing algorithms sacrifice orthogonality for a sparse result.
I Benchmark: GPower (Journée et al. [2010]).

I Goal: Extract sparse eigenvectors that preserve the orthogonality property.

Problem Formulation

I The orthogonal sparse eigenvector extraction translates to the following optimization
problem:

maximize
U

Tr
(
UTSUD

)
−

q∑
i=1

ρi‖ui‖0

subject to UTU = Iq,

where U ∈ Rm×q denotes the eigenvectors, S ∈ Rm×m the sample covariance matrix
and ‖ui‖0 the number of nonzero elements of the i-th eigenvector.
D = Diag(d) ∈ Rq×q

+ and ρi are regularization parameters.

I Without the sparsity (red) term it is the typical eigenvector extraction problem.

I Discontinuous, non-differentiable, non-concave objective function.

I Non-convex set.

Approximate Smooth Formulation

I We approximate the `0 norm with a smooth continuous and differentiable function
(Song et al. [2015]):

maximize
U

Tr
(
UTSUD

)
−

q∑
j=1

ρj

m∑
i=1

gεp (uij)

subject to UTU = Iq,

(1)

where

gεp (x) =


x2

2ε(p+ε) log(1+1/p), |x| ≤ ε,
log(p+|x|p+ε )+

ε
2(p+ε)

log(1+1/p) , |x| > ε,

with 0 < p ≤ 1 and 0 < ε� 1.
I The problem is still non-convex.

I Use the MM framework.
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Minorization-Maximization Framework

I Problem:
maximize

x
f (x)

subject to x ∈ X .
I Minorization-Maximization

algorithm:

x(k+1) = argmax
x∈X

g
(
x|x(k)

)
.

I Surrogate function g (x|xt) satisfies:

f
(
x(k)
)
= g

(
x(k)|x(k)

)
,

f (x) ≥ g
(
x|x(k)

)
∀x ∈ X ,

f ′
(
x(k);d

)
= g′

(
x(k);d|x(k)

)
,

∀x(k) + d ∈ X .
I Iteratively maximize g

(
x|x(k)

)
instead of maximizing f (x).

f (x)

x(k)

g
(
x|x(k)

)

Figure: Minorization-Maximization Algorithm

Proposition

The objective function of (1) is lowerbounded by the surrogate function

g
(
U |U (k)

)
= 2Tr

((
G(k) −H (k)

)T
U

)
+ c,

where
G(k) = SU (k)D, (2)

H (k)=
[

diag
(
w(k)−w(k)

max ⊗ 1m

)
vec
(
U (k)

)]
m×q

, (3)

and c is an optimization irrelevant constants. The weights w(k) ∈ Rmq
+ are given by

w
(k)
i =


ρi

2ε(p+ε) log(1+1/p), |u(k)i | ≤ ε,
ρi

2 log(1+1/p)|u(k)i |
(
|u(k)i |+p

), |u(k)i | > ε,

where u(k) = vec
(
U (k)

)
, and w

(k)
max ∈ Rq

+, with w
(k)
max,i being the maximum weight that

corresponds to the i-th eigenvector. Equality is achieved when U = U (k).

Procrustes Reformulation

I Observe that

arg max
U∈Vm,q

Tr

((
G(k) −H (k)

)T
U

)
= arg min

U∈Vm,q
‖U −

(
G(k) −H (k)

)
‖2F

where Vm,q = {U ∈ Rm× q|UTU = Iq} denotes the Stiefel manifold.

I The optimization problem of every MM iteration takes the following form:

minimize
U

‖U −
(
G(k) −H (k)

)
‖2F

subject to UTU = Iq.
(4)

I The optimization problem (4) is a rectangular Procrustes problem.
I Closed-form solution.

Lemma: Rectangular Procrustes

An optimal solution of the optimization problem (4) is U ? = V LV
T
R, where V L,V R are

the left and right singular vectors of the matrix
(
G(k) −H (k)

)
, respectively (Manton

[2002]).

Algorithm

Algorithm 1 IMRP - Iterative Minimization of Rectangular Procrustes

1: Set k = 0, choose U (0) ∈ {U : UTU = Iq}
2: repeat:
3: Compute G(k),H (k) with (2),(3), respectively
4: Compute V L, V R, the left and right singular vectors

of
(
G(k) −H (k)

)
, respectively

5: U (k+1) = V LV
T
R

6: k ← k + 1
7: until convergence
8: return U (k)

Numerical Results

I Construct a covariance matrix Σ through the eigenvalue decomposition
Σ = V diag(λ)V T .

I The first q eigenvectors have a pre-specified sparse structure.

I We consider a setup with m = 500, q = 5.

I Generate 500 data matrices A ∈ Rm×n by drawing n = 50 samples from a zero-mean
normal distribution with covariance matrix Σ, i.e., ai ∼ N (0,Σ), for i = 1, . . . , n.
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I Gene expression dataset: We consider m = 4000 genes with the largest variance and
we estimate q = 5 sparse eigenvectors.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.5  1  1.5  2

C
P

E
V

Cardinality (x104)

IMRP (proposed)
GPower-L0

Simple Thresholding

Conclusion

I We have proposed a new algorithm (IMRP) for sparse eigenvalue extraction.
I Unlike all the other existing methods, the resulting sparse eigenvectors preserve the orthogonality

property.
I IMRP improves the chance of exact recovery of the eigenvectors and matches the cumulative

percentage of explained variance (CPEV).
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