

Background & Motivation

- Principal Component Analysis (PCA) is a popular technique for data analysis and dimensionality reduction.
- Captures directions of maximum variance of the data.
- ► These directions (eigenvectors PC loadings) form an orthonormal basis.
- Principal components (PCs) are uncorrelated.
- Principal components are, in general, combinations of all the input variables.
- ► PC loadings are dense vectors.
- In many applications the variables have a physical meaning (e.g. gene expression).
- A sparse basis would help significantly the interpretability of the result.
- ► Trade-offs:
- Explained variance.
- Orthogonality of the PC loadings.
- Uncorellatedness of the PCs.

Related Work

- Existing methods:
- ► All the existing algorithms sacrifice orthogonality for a sparse result.
- ► Benchmark: GPower (Journée et al. [2010]).
- ► Goal: Extract sparse eigenvectors that preserve the orthogonality property.

Problem Formulation

The orthogonal sparse eigenvector extraction translates to the following optimization problem:

maximize
$$\operatorname{Tr}(\boldsymbol{U}^T \boldsymbol{S} \boldsymbol{U} \boldsymbol{D}) - \sum_{i=1}^q \rho_i \|\boldsymbol{u}_i\|_0$$

subject to $oldsymbol{U}^Toldsymbol{U} = oldsymbol{I}_a,$

where $m{U}\in m{R}^{m imes q}$ denotes the eigenvectors, $m{S}\in m{R}^{m imes m}$ the sample covariance matrix and $\|\boldsymbol{u}_i\|_0$ the number of nonzero elements of the *i*-th eigenvector. $D = \text{Diag}(d) \in \mathbf{R}^{q \times q}_+$ and ρ_i are regularization parameters.

- ► Without the sparsity (red) term it is the typical eigenvector extraction problem.
- Discontinuous, non-differentiable, non-concave objective function.
- ► Non-convex set.

Approximate Smooth Formulation

 \blacktriangleright We approximate the ℓ_0 norm with a smooth continuous and differentiable function (Song et al. [2015]):

$$\max_{U}$$

$$\begin{array}{ll} \underset{\boldsymbol{U}}{\text{maximize}} & \operatorname{Tr}\left(\boldsymbol{U}^{T}\boldsymbol{S}\boldsymbol{U}\boldsymbol{D}\right) - \sum_{j=1}^{q}\rho_{j}\sum_{i=1}^{m}g_{p}^{\epsilon}\left(u_{ij}\right)\\ \\ \text{subject to} & \boldsymbol{U}^{T}\boldsymbol{U} = \boldsymbol{I}_{q}, \end{array}$$

where

$$g_p^{\epsilon}(x) = \begin{cases} \frac{x^2}{2\epsilon(p+\epsilon)\log(1+1/p)}, & |x| \leq \epsilon\\ \frac{\log\left(\frac{p+|x|}{p+\epsilon}\right) + \frac{\epsilon}{2(p+\epsilon)}}{\log(1+1/p)}, & |x| > \epsilon \end{cases}$$

with $0 and <math>0 < \epsilon \ll 1$. ► The problem is still non-convex. Use the MM framework.

-0.5

Orthogonal Sparse Eigenvectors: A Procrustes Problem Konstantinos Benidis, Ying Sun, Prabhu Babu, Daniel P. Palomar

 $f(\mathbf{x})$

Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong

Figure: Minorization-Maximization Algorithm

$$^{(k)} \mathcal{I}^T \boldsymbol{U} + c,$$

$$\min_{\boldsymbol{W}_{m,q}} \|\boldsymbol{U} - \left(\boldsymbol{G}^{(k)} - \boldsymbol{H}^{(k)}\right)\|_{F}^{2}$$

$$\left(\mathbf{H}^{(k)}\right)\|_{F}^{2}$$
(4)

Algorithm

Algorithm 1 IMRP - Iterative Minimization of Rectangular Procrustes

1: Set
$$k = 0$$
, choose $U^{(0)} \in \{U : U : U : U : U : U\}$
2: repeat:

3: Compute
$$G^{(n)}, H^{(n)}$$
 with (2
4: Compute V_L, V_D the left :

of
$$\left(\boldsymbol{G}^{(k)} - \boldsymbol{H}^{(k)} \right)$$
, respectiv
 $\boldsymbol{U}^{(k+1)} = \boldsymbol{V}_L \boldsymbol{V}_R^T$

5:
$$U^{(k)} = 1$$

6: $k \leftarrow k + 1$

$$\kappa \leftarrow \kappa + 1$$

7: Until convergence
8: return
$$oldsymbol{U}^{(k)}$$

Numerical Results

- $\boldsymbol{\Sigma} = \boldsymbol{V} \mathsf{diag}(\boldsymbol{\lambda}) \boldsymbol{V}^{T}.$
- ► The first q eigenvectors have a pre-specified sparse structure.
- We consider a setup with m = 500, q = 5.
- normal distribution with covariance matrix Σ , i.e., $a_i \sim \mathcal{N}(\mathbf{0}, \Sigma)$, for $i = 1, \dots, n$.

Conclusion

- property
- percentage of explained variance (CPEV).

References

Michel Journée, Yurii Nesterov, Peter Richtárik, and Rodolphe Sepulchre. Generalized power method for sparse principal component analysis. The Journal of Machine Learning Research, 11:517–553, March 2010. Junxiao Song, Prabhu Babu, and Daniel P Palomar. Sparse generalized eigenvalue problem via smooth optimization. *IEEE Transactions on Signal*

- Processing, 63(7):1627–1642, April 2015.

 $\boldsymbol{U}^T \boldsymbol{U} = \boldsymbol{I}_a$

 $m{G}^{(k)}$. $m{H}^{(k)}$ with (2),(3), respectively and right singular vectors /ely

• Construct a covariance matrix Σ through the eigenvalue decomposition

• Generate 500 data matrices $A \in \mathbb{R}^{m \times n}$ by drawing n = 50 samples from a zero-mean

► We have proposed a new algorithm (IMRP) for sparse eigenvalue extraction. ► Unlike all the other existing methods, the resulting sparse eigenvectors preserve the orthogonality

► IMRP improves the chance of exact recovery of the eigenvectors and matches the cumulative

Jonathan H Manton. Optimization algorithms exploiting unitary constraints. *IEEE Transactions on Signal Processing*, 50(3):635–650, March 2002.