VOWEL NON-VOWEL BASED SPECTRAL WARPING AND TIME SCALE MODIFICATION FOR IMPROVEMENT IN CHILDREN'S ASR

IEEE ICASSP-2021 Hemant Kathania, Avinash Kumar and Mikko Kurimo

Hemant Kathania (Aalto University)

ICASSP 2021

< □ > < □ > < □ > < □ > < □ > < □ >

Overview

- Motivation
- A Non-Uniform LPC Based Formant Modification
- Experimental Setup and Speech Corpora
- Results and Discussion
- Conclusion

• • • • • • • • • • • •

Motivation

- ASR system is affected by several factor like inter-speaker variability such as age, gender, accent, speaking-rate, and formant frequencies of the speakers.
- To impart robustness towards this variability techniques like fMLLR and VTLN are used.
- Formant frequencies F1, F2, and F3 are higher in children's speech compared to adults' speech due to the shorter vocal tract length.
- Motivated by this issue, a non-uniform linear predictive coding (LPC) based formant modification technique is proposed by considering whether the given frame of speech is voiced/unvoiced.

< □ > < □ > < □ > < □ > < □ > < □ >

A Non-Uniform LPC Based Formant Modification

- The proposed approach a segmenting module, which segments the speech data into vowel and non-vowel like regions.
- The vowel like regions are first detected by using a recently reported method [1].
- After speech segmentation, Formant modification is carried out to the LP spectrum using warping.
- The pole-zero value of filter is chosen to be different for vowel and non-vowel like regions.

Cont'd

All-pass filter D(z) to warp the LPC spectrum[2].

$$D(z) = \frac{z^{-1} - \alpha}{1 - \alpha z^{-1}},$$
(1)

Where α is a warping factor in the range of $-1 < \alpha < 1$.

Figure 1: simplified block diagram of an ASR system

イロト イヨト イヨト イヨト

Cont'd

Spectral smoothing of a voiced frame (vowel /EI/) of speech having fundamental frequency affected by the proposed approach is shown.

Table 1: Speech corpora details for WSJCAM0 and PFSTAR used in ASR .

Corpus	WSJ	CAM0	PF-STAR		
Language	British English		British English		
Purpose	Training	Testing	Training	Testing	
Speaker kind	Adult	Adult	Child	Child	
No. of speakers	92	20	122	60	
(male & female)					
Age group	> 18 years	> 18 years	4-14 years	4-14 years	
No. of words	132,778	5,608	46,974	5,067	
Duration (hrs.)	15.5	0.6	8.3	1.1	
Duration (hrs.)	15.5	0.6	8.3	1.1	

Experiments Setup

- The Kaldi speech recognition toolkit used to develope a children's ASR.
- The 40-channel Mel-filterbank were used to compute 13-dimensional base MFCC features.
- For normalization, cepstral feature-space maximum likelihood linear regression (fMLLR) was used.
- DNN-HMM based acoustics model was explored [3] with 8 hidden layer and 1024 hidden nodes.
- Bigram language model (LM) was used.

< □ > < □ > < □ > < □ > < □ > < □ >

We also compared with diffrent existing methods, Synchronized overlap-add fixed synthesis (SOLAFS) [4] and Real-time iterative spectrogram inversion with look-ahead (RTISI-LA). [5]

Table 2: Results on proposed method and comparison with TSM algorithms RTISILA and SOLAFS.

Acoustic	WER (in %)					
model						
	Baseline	RTISILA	SOLAFS	SW		
DNN	19.76	16.96	15.00	14.37		

Table 3: Effect of combining the proposed method with TSM methods.

Acoustic	WER (in %)				
model	SW	SW +RTISILA	SW + SOLAFS		
DNN	14.37	13.39	10.58		

(日)

Table 4: WERs on DNN-based ASR for children's development set. The WERs show the effects of varying α_V and α_{NV} .

αν	WER (in %)					
αΝν	0.4	0.6	0.8	1.0	1.2	1.4
0.4	21.24	20.86	20.52	20.13	20.42	20.73
0.6	21.09	20.72	20.27	19.90	19.76	20.22
0.8	20.66	20.39	19.89	18.73	18.53	18.96
1.0	21.03	20.62	20.14	19.82	19.66	20.19
1.2	21.37	21.15	20.77	20.33	20.18	22.12
Baseline		21.83				

<ロト < 四ト < 三ト < 三ト

Cont'd

Table 5: Results on combined proposed method with RTISILA and SLOAFS and effect of vowel and non-vowel based parameter selection.

Acoustic	WER (in %)							
model		without VI	VV	With VNV				
		SW +	SW+	SW	SW +	SW+		
	SW	RTISILA	SOLAFS	SW	RTISILA	SOLAFS		
DNN	14.37	13.39	10.58	13.66	13.04	10.08		

Table 6: Results on proposed method on pooled adults and children speech on system training. Effect of vowel and non-vowel based parameter selection.

Acoustic		WER (in %)					
model		without VNV			With VNV		
	Baseline	SW	SW +	SW+	SW	SW +	SW+
			RTISILA	SOLAFS		RTISILA	SOLAFS
DNN	12.26	11.25	11.14	8.89	10.86	10.57	8.51

Hemant Kathania (Aalto University)

ICASSP 2021

- The proposed method gives a relative improvement of 31% over a baseline with DNN acoustic model using MFCC acoustic features.
- The proposed + SOLAFS combined system gives a relative improvement of 49% as compared to baseline system.
- In pooled system also found improvement.

- A. Kumar, S Shahnawazuddin, and G. Pradhan, "Non-local estimation of speech signal for vowel onset point detection in varied environments," *Interspeech 2017*, pp. 429–433, 2017.
- [2] H. W. Strube, "Linear prediction on a warped frequency scale," The Journal of the Acoustical Society of America, vol. 68, no. 4, pp. 1071– 1076, 1980.
- [3] S. P. Rath, D. Povey, K. Veselỳ, and J. Cernockỳ, "Improved feature processing for deep neural networks.," in *Interspeech*, 2013, pp. 109– 113.
- [4] D. Henja and B. Musicus, "The solafs time-scale modification algorithm,", 1991.
- [5] X. Zhu, G. T. Beauregard, and L. L. Wyse, "Real-time signal estimation from modified short-time fourier transform magnitude spectra," *IEEE Transactions on Audio, Speech, and Language Processing*, vol. 15, no. 5, pp. 1645–1653, 2007.

イロト 不得 トイヨト イヨト 二日

Thank you

イロト イヨト イヨト イヨト