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Introduction
• Cochlear implants (CIs) (Fig. 1) aim to restore speech 

perception to individuals with sensorineural hearing loss
• CI users have difficulty understanding speech in 

listening environments that contain reverberation and 
noise [1]

• CI users are more detrimentally affected than normal 
hearing listeners because the speech signal presented to 
a CI user has limited spectral resolution

Time-Frequency Masking

• In real-time, an algorithm must be developed to 
estimate mask from reverberant signal (Fig. 3)

• T-F mask estimation algorithms have limited 
ability to remove reverberation in low 
frequencies, where overall level of reverberation 
is higher [4]

Phoneme-Based Mask Estimation

• Phoneme and manner of articulation (MOA) 
classification

• MOA describes how articulators influence airflow 
through vocal tract

• Phoneme classification is challenging due to 
confusions within same MOA (Fig. 7), which leads to 
confusions in classification [6]

• MOA also conveys spectral information, so potential 
benefit for speech enhancement algorithms with less 
complexity

Classification Tasks
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Results
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• Anechoic: Speech was obtained from the TIMIT database [8]
• Reverberant: Speech signals were convolved with room impulse response functions 

(RIRs) from the Aachen database [9], which contains recordings from various 
acoustic environments as well as left and right channels

• Table 1 shows the speech stimuli and acoustic environments that were used in the 
training validation, and testing sets
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Conclusion
• Overall goal was to develop classification model to categorize phonetic units within 

constraints of CI processor
• Results showed comparable levels of performance between traditional ASR features and 

CI-compatible features
• Future work will aim to develop phoneme-specific mask estimation algorithm where 

prediction from phoneme classification model is used to activate relevant mask 
estimation model

• Table 2 shows the percent of correctly identified phonemes
• CI-inspired features (LSTM-ACE-CI and LSTM-MFB-CI) outperformed ASR features 

(LSTM-MFB-ASR)

Dataset Speech Stimuli Acoustic Environments
Training TIMIT training set • 25% anechoic

• 75% reverberant (lecture hall and 
meeting room)

Validation TIMIT development set • 25% anechoic
• 75% reverberant (lecture hall and 

meeting room)
Testing TIMIT testing set • Anechoic

• Reverberant (office room and 
stairway)
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Model Anechoic Office Stairway
Baseline (majority class) 25.8 25.8 25.8
LSTM-STFT-CI 62.4±0.5 48.9±0.9 45.7±1.0
LSTM-ACE-CI 64.0±0.5 50.8±0.6 47.1±0.2
LSTM-MFB-CI 64.1±0.6 50.6±0.4 47.5±0.7
LSTM-MFB-ASR 62.6±0.3 49.5±0.3 44.6±0.9
BLSTM-MFCC-ASR 71.1±0.2 58.9±0.5 55.9±0.4

Model Anechoic Office Stairway
Baseline (majority class) 37.3 37.3 37.3
LSTM-STFT-CI 82.2±0.4 70.8±0.8 68.5±0.3
LSTM-ACE-CI 82.9±0.1 72.1±0.2 69.2±0.3
LSTM-MFB-CI 82.9±0.4 72.0±0.4 69.3±0.7
LSTM-MFB-ASR 81.4±0.3 70.1±0.3 66.3±0.7
BLSTM-MFCC-ASR 85.2±0.1 77.2±0.2 74.5±0.1

Phoneme Classification

Manner of Articulation Classification

• Table 3 shows the percent of correctly identified manners of articulation
• Higher overall accuracy than phoneme classification
• Similar trend to phoneme classification where LSTM-ACE-CI and LSTM-MFB-CI 

provided highest levels of performance
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• Models: unidirectional long short-term memory (LSTM) or bidirectional long short-
term memory (BLSTM) followed by softmax layer for classification 

• Speech enhancement technique where the time-frequency (T-F) representation of speech 
is multiplied by a matrix of gain values to suppress reverberation and noise [3] (Fig. 2) 

• Leverage spectro-temporal structure using phoneme-based masks, as phonemes are 
concentrated in specific frequency ranges (Fig. 4)

• Phoneme-based masks have improved the performance of ASR models [5], so potential 
benefit for CI users

• In ideal case where phoneme is known, phoneme-specific masks improve vocoded 
speech intelligibility compared to conventional, phoneme-independent masks (Fig. 5)

Fig. 1: Diagram of cochlear implant. 
Image source: Medical illustrations by NIH, 
Medical Arts and Photography Branch [2]
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• Goal: develop a phoneme classification model (Fig. 6) that can categorize phonemes 
within the constraints of a CI: T-F Mask 
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• Framewise
• Causal
• Same time-frequency resolution as a CI
• Low parametric complexity

• ASR features
• Extracted over 25ms frames with 10ms frame shift
• MFB-ASR (log-mel-filterbank ASR), MFCC-ASR (mel-frequency cepstral 

coefficient ASR)
• CI features
• Extracted over 8ms frames with 2ms frame shift
• STFT-CI (log short-time Fourier transform), ACE-CI (Advanced Combination 

Encoder [7]), MFB-CI
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ASR features

CI features
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Fig. 3: Conventional phoneme-independent mask 
estimation

Fig. 2: Application of time-frequency mask to reverberant speech signal. 

Fig. 6: Phoneme-based mask estimation framework

Fig. 7: Spectra of phonemes. 
Phonemes within the same MOA 
have similar spectra.

Fig. 8: Feature extraction framework. This figure shows ASR features and CI-inspired features are extracted within the 
ACE CI processing pipeline.

Fig. 4: 
Spectrogram of 
“asa”. “a” 
activates low 
frequencies, 
while “s” 
activates high 
frequencies. 

Fig. 5: Intelligibility of 
vocoded speech under 
different processing 
conditions. Results 
show mean and standard 
deviation in percent of 
correct phonemes for 
normal hearing listeners.

Table 2: Percent of correctly identified phonemes. Values indicate the mean ± 1 standard deviation over five model 
instances trained using different random weight initializations. Bolded values indicate best performing unidirectional LSTMs.

Table 3: Percent of correctly identified manners of articulation. Values indicate the mean ± 1 standard deviation over five 
model instances trained using different random weight initializations. Bolded values indicate best performing unidirectional 
LSTMs.

Table 1: Training, validation, and testing sets. This table shows the speech stimuli and the acoustic environments 
that were used in the training, validation, and testing sets.


