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Classic Multi-armed Bandits
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o Unknown reward distributions

o Goal: Maximize Cumulative Reward
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Classic Multi-armed Bandits
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o Unknown reward distributions

o Equivalent Goal: Min. Cumulative Regret
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Application to recommendation system
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Anonymous user enters the system

Maximize cumulative reward by sequentially recommending available movies to entering users 



Classic Multi-armed Bandits

6

o Algorithms: UCB [Auer at el], Thompson Sampling [Thompson], KL-

UCB [Bubeck et al], etc.

o Expected Regret is

LIMITATION: Rewards assumed to be independent across arms

R1 R2 RK

⇥((K � 1) log T )



Variants for Personalized Recommendations 
Contextual Bandits
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Context vector θ (known)

Weight vector w1 (unknown)

Reward w1
T θ Reward wK

T θ

[Li et al, Agarwal et al, and many other works]



Variants for Personalized Recommendations 
This work: Structured Bandits
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Context vector θ (unknown, 
user not sign in)

Reward μ1 (θ) Reward μK (θ)



How do we know the mean reward functions μ(.)?
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Reward μ1(θ) Reward μK(θ)

o Controlled user studies for different types of users
o Using contextual information from a previous campaign

Context vector θ (unknown)
For eg. Age/Profession



The Structured Bandit Framework

o There is a fixed unknown parameter lies 𝜃∗ in a known set Θ
o No restrictions on the reward functions 𝜇"(𝜃)
o θ can be continuous, or a vector

µ1(✓) µ2(✓) µK(✓)...

✓Context of the 
user (unknown):

Mean Reward 
Functions (known)

For eg.
Age/Income/Profession
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GOAL: Maximize cumulative reward



Example

Hidden context 
𝜃∗ = 3
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Example

Suppose we choose Arm 1: Receive a random reward with mean 2.5

Hidden context 
𝜃∗ = 3
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Related Work

o Linear Bandits 

o GLM Bandits [Filippi et al]      ,    invertible g 

o Global and Regional Bandits [Atan et al, Wang et al], invertible 

o Known conditional reward distributions [Combes et al 2017]

o Closest work: [Lattimore et al 2014], works for UCB
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Overview of Our Algorithm

1) Estimating a confidence set 'Θ# for 𝜃∗

2) Remove 'Θ#-non-competitive Arms for step t

3) Play one of 'Θ#-competitive arms using any classic bandit algorithm
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Step 1: Estimating a Confidence set !Θ!

o Obtain the empirical mean              of each arm k using its      
samples until time

o The confidence set is constructed as follows
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Step 1: Estimating a Confidence set !Θ!

o Obtain the empirical mean              of each arm k using its      
samples until time t

o The confidence set is constructed as follows
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Step 2: Remove !Θ!-non-competitive Arms 

o For 'Θ# = [1.5,4.5], then Arm 3 cannot be the best arm since

o We say that Arm 3 is (𝛩#-non-competitive and focus on arms 1 & 2
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Step 3: Use any classic bandit algorithm

o Options: UCB, Thompson sampling, KL-UCB, etc.
o Previous work [Lattimore et al 2014] works only with a modified 

UCB arm-pulling scheme

21



What are competitive and non-competitive arms?

o Θ∗is the confidence set after pulling arm k* infinitely many times

o An arm is non-competitive if it is Θ∗ −non-competitive, that is, if 

there exists 𝜖 > 0: 𝜇"∗ 𝜃 > 𝜇" 𝜃 ∀ 𝜃: 𝜇"∗ 𝜃∗ − 𝜇"∗ 𝜃 < 𝜖

o Number of competitive arms depends on the hidden θ
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Regret Bound for UCB-C
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Theorem 1: Expected pulls of Non-Competitive arms are 
bounded, i.e.𝑂(1)
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Regret Bound for UCB-C

24

Theorem 1: Expected pulls of Non-Competitive arms are 
bounded, i.e.𝑂(1)

𝐸 𝑛$ 𝑇 ≤ 𝐾𝑡% +,
&'(

)

2𝐾𝑡(*+ + 𝐾,,
-&!

)

6
𝑡
𝐾

.*+

= 𝑂(1)

Theorem 2: Expected pulls of Competitive arms are 𝑂(log 𝑇)

𝐸 𝑛$ 𝑇 ≤
8𝛼𝜎. log 𝑇

Δ$.
+

2𝛼
𝛼 − 2

+ ,
&'(

)

2𝐾𝑡(*+

= 𝑂(log 𝑇)

𝐸 𝑅𝑒𝑔 𝑇 ≤ (C – 1) O(log T) + O(1)

If C = 1, E[Reg(T)] = O(1) 



Comparison with Classical Bandits

Regret upper bound of classic UCB/TS

𝑅𝑒𝑔/01 𝑇 = 𝐾 − 1 ×𝑂(log 𝑇)

Each sub-optimal arm pulled 𝑂(log 𝑇) times

Regret upper bound for UCB-C
𝑅𝑒𝑔/01*0 𝑇 = (𝐶 − 1) ×𝑂(log 𝑇) + 𝑂(1)

Only C-1 competitive sub-optimal arms are pulled 𝑂(log 𝑇) times
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Simulations

𝜃∗ = 0. 5 𝜃∗ = 1.8 𝜃∗ = 2.8
𝐶 = 1 𝐶 = 2 𝐶 = 3
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Rewards ∼
𝑁(𝜇! 𝜃∗ , 4)



Experiments on the MovieLens Dataset

o Dataset has 1M ratings for 3883 movies by 6040 users 

o Movies have 18 different genres 

o We classify users based on θ = (age, occupation) pair

o Mean rewards learnt on 50% of the dataset 

GOAL: Find the right movie genre for an unknown user type
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Experiments on MovieLens
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𝜃∗ = 18-25 year old
college students

𝜃∗ = 25-34 year old
executives



Key Takeaways

o Exp. Regret  O ((C-1) log T),  C is the no. of competitive arms

o Competitive sub-optimal arms are pulled O(log T) times, and non-
competitive arms are pulled O(1) times

o When C = 1, we get bounded or O(1) regret! 

o Allows us to use any classic bandit algorithm (UCB, TS, etc.)
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Future Directions

o Best-Arm Identification problem in the structured setting

o Better use of informative arms that can help estimate θ
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