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Classic Multi-armed Bandits
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Classic Multi-armed Bandits
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o Equivalent Goal: Min. Cumulative Regret Z(sz‘ — Ry,)
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& Application to recommendation system
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Maximize cumulative reward by sequentially recommending available movies to entering users



Classic Multi-armed Bandits
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o Algorithms: UCB [Auer at el], Thompson Sampling [Thompson], KL-
UCB [Bubeck et al], etc.

o Expected Regretis O((K — 1)logT)

LIMITATION: Rewards assumed to be independent across arms



Variants for Personalized Recommendations
Contextual Bandits

Context vector 6 (known)

Weight vector w, (unknown)

Reward w," O Reward w,' 0

[Li et al, Agarwal et al, and many other works]



Variants for Personalized Recommendations
This work: Structured Bandits

Context vector 8 (unknown,
user not sign in)
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How do we know the mean reward functions p(.)?

o Controlled user studies for different types of users
o Using contextual information from a previous campaign

Context vector 6 (unknown)
For eg. Age/Profession
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The Structured Bandit Framework

o There s a fixed unknown parameter lies 8 in a known set ©

o No restrictions on the reward functions u; (6)
o 0 canbe continuous, or a vector

GOAL: Maximize cumulative reward

Context of the R @ For eg.
user (unknown): Age/Income/Profession

Mean Reward Y ((9) /Lz(@) /LK(@)

Functions (known)



Common Hidden
Parameter

Hidden context
6* =3
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Hidden context
6* =3

Common Hidden
Parameter

Suppose we choose Arm 1: Receive a random reward with mean 2.5
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Related Work

Linear Bandits Uk ((9) = wZH

GLM Bandits [Filippietall u(0) = g(wi 6), invertible g

Global and Regional Bandits [Atan et al, Wang et al], invertible Mk(e)
Known conditional reward distributions [Combes et al 2017]

Closest work: [Lattimore et al 2014], works for UCB

pa(l) pa(0) oo pi(0)
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Overview of Our Algorithm

1) Estimating a confidence set 8, for 6*
2) Remove 0,-non-competitive Arms for step t

3) Play one of ©,-competitive arms using any classic bandit algorithm

Common Hidden
Parameter
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Step 1: Estimating a Confidence set 0,

o Obtain the empirical mean fix (t) of each arm k using its 7% (%)
samples until time

o The confidence set is constructed as follows

alogt

ni (t)

O, = {9 () — e (0)] <

Common Hidden
Parameter

, for all k € [K]}

T 3 5 -_l--3 5
b f

15



Step 1: Estimating a Confidence set 0,

o Obtain the empirical mean (i (t) of each arm k using its 1k (t)
samples until time t

o The confidence set is constructed as follows

alogt

ni (t)

O; = {9: | (1) — pk(0)] < , for all k£ € [K]}

......................
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Step 1: Estimating a Confidence set 0,

o Obtain the empirical mean (i (t) of each arm k using its 1k (t)
samples until time t

o The confidence set is constructed as follows

alogt

ni (t)

O; = {9: | () — e (0)] < , for all k£ € [K]}
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Step 2: Remove ®,-non-competitive Arms

o For©®, =[1.5,4.5], then Arm 3 cannot be the best arm since

ur(0) < legg>_§K}uz(9) Vo € 0,

o We say that Arm 3 is &,-non-competitive and focus on arms 1 & 2

Common Hidden
Parameter
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Step 2: Remove O,-non-competitive Arms

o For©®, =[1.5,4.5], then Arm 3 cannot be the best arm since

ur(0) < legg>_§K}uz(9) Vo € 0,

o We say that Arm 3 is &,-non-competitive and focus on arms 1 & 2

Common Hidden
Parameter
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Step 3: Use any classic bandit algorithm

o Options: UCB, Thompson sampling, KL-UCB, etc.

o Previous work [Lattimore et al 2014] works only with a modified
UCB arm-pulling scheme

Common Hidden
Parameter
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What are competitive and non-competitive arms?

o 0%isthe confidence set after pulling arm k™ infinitely many times

o Anarm is non-competitive if itis ®* —non-competitive, that is, if
there exists € > 0: pu<(0) > up (0) V{0: | (0*) — w»(0)| < €}

o Number of competitive arms depends on the hidden

— Arm 1
— Arm 2
— Arm 3
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Regret Bound for UCB-C

Theorem 1: Expected pulls of Non-Competitive arms are
bounded, i.e. 0(1)

T T
t 2—Q
E[n,(T)] < Kty + 2 2Kt1=% + K3 Z 6 (E)
t=1

Kt,
=0(1)

Theorem 2: Expected pulls of Competitive arms are O(logT)

T
8acg?logT 20
E[n(T)] < ——22= + 221«1—“

= 0(logT)
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Regret Bound for UCB-C

Theorem 1: Expected pulls of Non-Competitive arms are
bounded, i.e. 0(1)

T T
t 2—Q
E[n (T)] < Kto + z 2Kt~ 4 K3 z 6 (E)

E[Reg(T)] é_EC —1) O(log 'Ili) + 0(2)

If C=1, E[Reg(T)] =0O(a)
8ac?logT ‘

E[n,(T)] < -+ ca +22Kt1_“
M =T a=2 " Ly

= 0(logT)
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Comparison with Classical Bandits

Regret upper bound of classic UCB/TS
Regycp(T) = (K — 1)x0(logT)

Each sub-optimal arm pulled O (log T') times

Regret upper bound for UCB-C
Regycp—c(T) = (€ —1) xO(logT) + 0(1)

Only C-1 competitive sub-optimal arms are pulled O (log T) times
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Simulations

Rewards ~
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Experiments on the MovieLens Dataset

o Dataset has 1M ratings for 3883 movies by 6040 users
o Movies have 18 different genres
o We classify users based on 0 = (age, occupation) pair

o Mean rewards learnt on 50% of the dataset

GOAL: Find the right movie genre for an unknown user type
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Experiments on MovielLens
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Key Takeaways

Exp. Regret O ((C-1) logT), Cisthe no. of competitive arms

Competitive sub-optimal arms are pulled O(log T) times, and non-
competitive arms are pulled O(2) times

When C =1, we get bounded or O(2) regret!

Allows us to use any classic bandit algorithm (UCB, TS, etc.)

AN

pa(l) pa(0) oo pi(0)
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Future Directions

o Best-Arm Identification problem in the structured setting

o Better use of informative arms that can help estimate 6
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