Training Neural Networks with Domain Pattern-Aware Auxiliary Task for Sleep Staging

Taeheon Lee*, Jeonghwan Hwang*, Honggu Lee Looxid Labs, Seoul, South Korea

Introduction

Background

- Sleep staging is central to sleep medicine where changes in sleep stages are inferred from physiological recordings like EEG and EOG.
- Sleep staging is labor-intensive since trained technicians should manually inspect every epoch (30s segments) and annotate sleep stages for eight-hour long whole-night EEG recordings.
- Several machine learning approaches have been proposed to automate sleep staging. Among them, deep learning models have shown promising results.

Challenges and Motivation

- Due to small dataset sizes, neural networks often failed to acquire generalizable representations.
- Neural networks are often uninterpretable whereas clinical domains require explanations for decisions.
- Previous studies have shown that guiding neural networks with domain-knowledge features can improve performances and interpretability [1].
- Existence of certain EEG patterns provides an invaluable cue for scoring a stage from EEG recordings [2].

Objectives

- We introduce an auxiliary task to guide neural networks to learn significant EEG patterns for sleep staging.
- Specifically, our objective is to make neural networks to learn the existences of significant EEG patterns for sleep staging.

2

Main Contribution

Performance Improvements

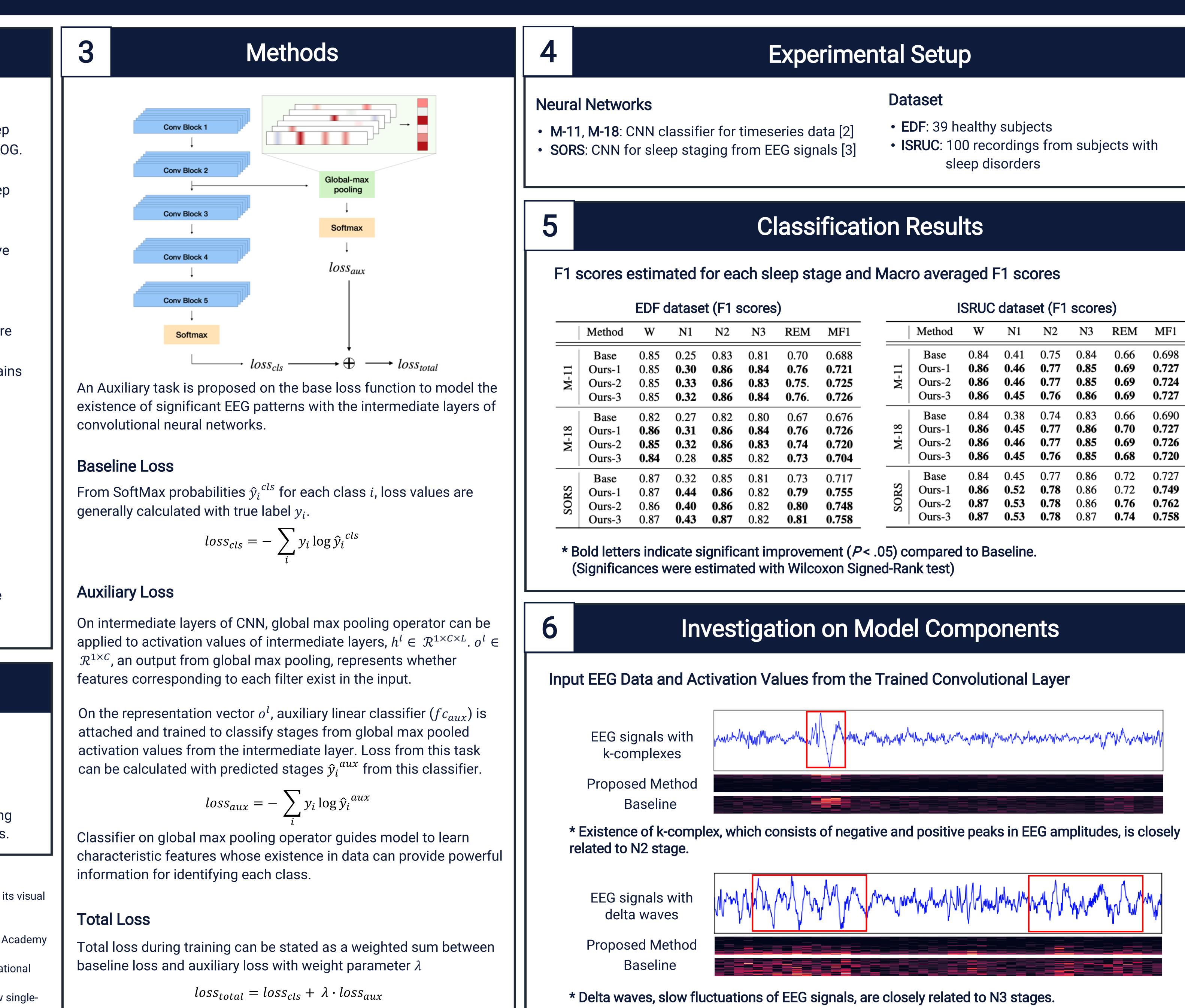
• The auxiliary task significantly improves prediction accuracy.

Model Interpretability

• Convolutional filters learned important EEG patterns for identifying sleep stages. Important parts in data can be located from models.

References

- [1] Li, Xiaoyu, et al. "Domain knowledge guided deep atrial fibrillation classification and its visual interpretation." Conference on Information and Knowledge Management (2019).
- [2] Berry, Richard B., et al. "The AASM manual for the scoring of sleep and associated events." Rules, Terminology and Technical Specifications, Darien, Illinois, American Academy of Sleep Medicine (2012).
- [3] Dai, Wei, et al. "Very deep convolutional neural networks for raw waveforms." International Conference on Acoustics, Speech, & Signal Processing (2017).
- [4] Sors, Arnaud, et al. "A convolutional neural network for sleep stage scoring from raw singlechannel EEG." Biomedical Signal Processing and Control 42 (2018).



	Method	W	N1	N2	N3	REM	MF1
M-11	Base	0.84	0.41	0.75	0.84	0.66	0.698
	Ours-1	0.86	0.46	0.77	0.85	0.69	0.727
	Ours-2	0.86	0.46	0.77	0.85	0.69	0.724
	Ours-3	0.86	0.45	0.76	0.86	0.69	0.727
M-18	Base	0.84	0.38	0.74	0.83	0.66	0.690
	Ours-1	0.86	0.45	0.77	0.86	0.70	0.727
	Ours-2	0.86	0.46	0.77	0.85	0.69	0.726
	Ours-3	0.86	0.45	0.76	0.85	0.68	0.720
SUKS	Base	0.84	0.45	0.77	0.86	0.72	0.727
	Ours-1	0.86	0.52	0.78	0.86	0.72	0.749
	Ours-2	0.87	0.53	0.78	0.86	0.76	0.762
	Ours-3	0.87	0.53	0.78	0.87	0.74	0.758

may my Mill Man May May	MAN MAN MAN
selv related to N3 sta	