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Problem Formulion

Nu
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strictly disjoint. We have S and auxiliary attributes for training, and our goal is to
recognize unseen class U correctly.

* In ZSL, seen classes S = {(xf,yis)}’iv;land unseen classes U = {(x}‘, y}‘)} L are
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Motivation

» The key in ZSL lies in the learning of visual and semantic cross-domain mappings.
We consider introducing more attributes-related visual information for the model to
enhance this mapping and constructing the relationship between the objects and their
background information.
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» Our model takes the original scale
image as input and generates a
delicate scale image through the
cropping module. The backbone
CNN extract features from both
scale images, and two cooperative
attention-based modules are applied
on two CNN, respectively. We then
project the features to the attribute
space as well as the latent space.
All parameters are jointly
optimized.
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Results

CUB AwAZ
Methods I —o—p5 T35 PS
ALE[7] |532 549 [ 653 3599
SIE[19] | 553 539|620 656
SYNC [20] | 54.1 536 | 727 540
LDF[4] |67.1 675 | 833 655
LFGAA [3] | 677 677 | 843 68.1
SGMA[5] | 705 710 | 835 68.8
CMFZT 677 714 | 844 647
CMFZE | 686 727 | 847 653
CMFZ 700 737 | 859 684

The results showed that our model achieved the
best performance on CUB PS and AwWA2 SS.

The ablation analysis showed that both CCM
and CAM could boost the performance.
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Thank you for listening!

If you have any questions, please feel free
to contact our corresponding author
(nyguan@sina.com).



