


[1] X. G. Doukopoulos and G. V. Moustakides, "Adaptive power techniques for blind channel estimation in CDMA systems," IEEE Transactions on Signal Processing, vol. 53, no. 3, pp. 1110-1120, Mar. 2005. [2] P. J. Schreier and L. L. Scharf, "Second-order analysis of improper complex random vectors and processes," IEEE Transactions on Signal Processing, vol. 51, no. 3, pp. 714-725, March 2003. [3] A. S. Cacciapuoti, G. Gelli, L. Paura, and F. Verde, "Widely Linear Versus Linear Blind Multiuser Detection With Subspace-Based Channel Estimation: Finite Sample-Size Effects," IEEE Transactions on Signal Processing, vol. 57, no. 4, pp. 1426-1443, Dec. 2008. [4] S. Abdallah and I. N. Psaromiligkos, "Widely Linear versus Conventional Subspace-Based Estimation of SIMO Flat-Fading Channels: Mean Squared Error Analysis," IEEE Transactions on Signal Processing, vol. 60, no. 3, pp. 1307-1318, Mar. 2012. [5] S. C. Douglas, "Widely-linear recursive least-squares algorithm for adaptive beamforming," in Proc. IEEE International Conference on Acoustics, Speech and Signal Processing, Taipei, Taiwan, April 2009. [6] N. Song, W. U. Alokozai, R. C. de Lamare, and M. Haardt, "Adaptive Widely Linear Reduced-Rank Beamforming Based on Joint Iterative Optimization," IEEE Signal Processing Letters, vol. 21, no. 3, pp. 265-269, Mar. 2014. [7] Z. Xu, P. Liu, and X. Wang, "Blind multiuser detection: From MOE to subspace methods," IEEE Transactions on Signal Processing, vol. 52, no. 2, pp. 510-524, Feb. 2004.

THE UNIVERSITY of York

Complexity Analysis of Adaptive Channel Estimation Algorithms

 \leftarrow Fig.: total No. of complex "+" and "×" per iteration per symbol compared to M

Considered Adaptive Schemes with m = 1, 2, 3:

- Linear RLS (L-RLS)
- Proposed WL-A-RLS
- Proposed WL-S-RLS

 \Rightarrow WL-A-RLS: high complexity \Rightarrow WL-S-RLS with $m = 1 \approx$ L-RLS with m = 3

$-\Theta$ - L-RLS m=1	
$- \triangleleft - L - RLS m = 1$ $- \triangleleft - L - RLS m = 2$	
- ♦ - L-RLS m=3	Cimulation actum
	Simulation setup:
- WL-A-RLS m=2	$\sqrt{\text{CDMA system with } K} = 12 \text{ users}$
WL-A-RLS m=3 - □- WL-S-RLS m=1	
-X- WL-S-RLS m=2	$\sqrt{\text{Random spreading sequences of length } N = 32$
+ WL–S–RLS m=3	
	$\sqrt{\text{BPSK-modulated signals (strictly non-circular)}}$
~ 0 ΘΘΘ	
	Multipath block-fading channel: length L = 3 and
3	power delay profile [0,-3,-6] dB
~ 1	$\sqrt{\text{Input SNR}} = 12 \text{ dB}$
	Dynamic case: at bit 1000, 6 users with 10 dB more
	power enter the channel
1000 1500 2000	
r of Snapshots	
<u> </u>	
	• Observal activation MCE in dynamic accord
	Channel estimation MSE in dynamic case
	\triangleright WL > L and robust in the dynamic case
	▷ WL > L and robust in the dynamic case ▷ $m = 2$ is sufficient for WL
	▷ WL > L and robust in the dynamic case ▷ $m = 2$ is sufficient for WL ▷ WL-S-RLS slightly better than WL-A-RLS but
-⊖-L-RLS m=1	▷ WL > L and robust in the dynamic case ▷ $m = 2$ is sufficient for WL ▷ WL-S-RLS slightly better than WL-A-RLS but
	 WL > L and robust in the dynamic case m = 2 is sufficient for WL WL-S-RLS slightly better than WL-A-RLS but with much lower complexity
$-\Theta - L - RLS m = 1$ $-\triangleleft - L - RLS m = 2$ $- \diamondsuit - L - RLS m = 3$ $- \ominus - WL - A - RLS m = 1$	▷ WL > L and robust in the dynamic case ▷ $m = 2$ is sufficient for WL ▷ WL-S-RLS slightly better than WL-A-RLS but
$- \ominus - L - RLS m = 1$ $- \blacklozenge - L - RLS m = 2$ $- \diamondsuit - L - RLS m = 3$ $- \ominus - WL - A - RLS m = 1$ $- \blacklozenge - WL - A - RLS m = 2$	 WL > L and robust in the dynamic case m = 2 is sufficient for WL WL-S-RLS slightly better than WL-A-RLS but with much lower complexity Output SINR for WL-CMV receiver
$- \ominus - L - RLS m = 1$ $- \blacklozenge - L - RLS m = 2$ $- \diamondsuit - L - RLS m = 3$ $- \ominus - WL - A - RLS m = 1$ $- \diamondsuit - WL - A - RLS m = 2$ $- \diamondsuit - WL - A - RLS m = 3$	 ► WL > L and robust in the dynamic case ► m = 2 is sufficient for WL ► WL-S-RLS slightly better than WL-A-RLS but with much lower complexity ► Output SINR for WL-CMV receiver ► WL has ≥ 3 dB gain over L
$- \ominus - L - RLS m = 1$ $- \blacklozenge - L - RLS m = 2$ $- \diamondsuit - L - RLS m = 3$ $- \ominus - WL - A - RLS m = 1$ $- \diamondsuit - WL - A - RLS m = 2$ $- \diamondsuit - WL - A - RLS m = 3$ $- \Box - WL - S - RLS m = 1$	 ► WL > L and robust in the dynamic case ► m = 2 is sufficient for WL ► WL-S-RLS slightly better than WL-A-RLS but with much lower complexity ► Output SINR for WL-CMV receiver ► WL has ≥ 3 dB gain over L
$- \ominus - L - RLS m = 1$ $- \blacklozenge - L - RLS m = 2$ $- \diamondsuit - L - RLS m = 3$ $- \bigcirc - WL - A - RLS m = 1$ $- \circlearrowright - WL - A - RLS m = 2$ $- \circlearrowright - WL - A - RLS m = 3$ $- \circlearrowright - WL - S - RLS m = 1$ $- \leftthreetimes - WL - S - RLS m = 2$ $- \circlearrowright - WL - S - RLS m = 3$	 ▷ WL > L and robust in the dynamic case ▷ m = 2 is sufficient for WL ▷ WL-S-RLS slightly better than WL-A-RLS but with much lower complexity ▶ Output SINR for WL-CMV receiver ▷ WL has ≥ 3 dB gain over L ▷ WL channel estimation directly applied to blind WL
$-\bigcirc -L-RLS m=1$ $-\triangleleft -L-RLS m=2$ $-\diamondsuit -L-RLS m=3$ $-\bigodot WL-A-RLS m=1$ $-\checkmark WL-A-RLS m=2$ $-\diamondsuit WL-A-RLS m=3$ $-\blacksquare WL-S-RLS m=1$ $-≃ WL-S-RLS m=2$ $-\circlearrowright WL-S-RLS m=3$ $-≃ SINR^{L-CMV}$	 ► WL > L and robust in the dynamic case ► m = 2 is sufficient for WL ► WL-S-RLS slightly better than WL-A-RLS but with much lower complexity ► Output SINR for WL-CMV receiver ► WL has ≥ 3 dB gain over L
$-\Theta - L - RLS m = 1$ $-\triangleleft - L - RLS m = 2$ $- \diamondsuit - L - RLS m = 3$ $-\Theta - WL - A - RLS m = 1$ $- \blacklozenge - WL - A - RLS m = 2$ $- \circlearrowright - WL - A - RLS m = 3$ $- = - WL - S - RLS m = 1$ $- \times - WL - S - RLS m = 2$ $- \times - WL - S - RLS m = 3$ $- = - SINR_{max}^{L - CMV}$	 ▷ WL > L and robust in the dynamic case ▷ m = 2 is sufficient for WL ▷ WL-S-RLS slightly better than WL-A-RLS but with much lower complexity ▶ Output SINR for WL-CMV receiver ▷ WL has ≥ 3 dB gain over L ▷ WL channel estimation directly applied to blind WL
$-\bigcirc -L-RLS m=1$ $-\triangleleft -L-RLS m=2$ $-\diamondsuit -L-RLS m=3$ $-\bigodot WL-A-RLS m=1$ $-\checkmark WL-A-RLS m=2$ $-\diamondsuit WL-A-RLS m=3$ $-\blacksquare WL-S-RLS m=1$ $-≃ WL-S-RLS m=2$ $-\circlearrowright WL-S-RLS m=3$ $-≃ SINR^{L-CMV}$	 ▷ WL > L and robust in the dynamic case ▷ m = 2 is sufficient for WL ▷ WL-S-RLS slightly better than WL-A-RLS but with much lower complexity ▶ Output SINR for WL-CMV receiver ▷ WL has ≥ 3 dB gain over L ▷ WL channel estimation directly applied to blind WL

Propose a subspace-based WL blind channel estimation based on iterative power

Adaptive algorithms for WL-CMV receiver: WL-A-RLS and WL-S-RLS \Rightarrow a faster convergence and lower complexity than WL-A-RLS

EEE *Signal Processing Society*