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Introduction

◮ Blind channel estimation is attractive since no transmission of training
sequences is required ⇒ saves channel bandwidth

◮ Conventional subspace-based methods rely on Singular Value
Decomposition (SVD)
− high computational complexity for a system with a large processing

gain
− erroneous rank estimation ⇒ a drastic performance degradation

◮ Iterative power method [1]:
+ eliminates SVD
+ reduces computational

complexity

◮ Channel estimation requires second-order statistics of the data r ∈ C
M

⊲ Usually assume r is second-order circular ⇒ covariance matrix R = E
{

rrH
}

(r: zero-mean)
⊲ However when r is non-circular ⇒ pseudo-covariance matrix Ř = E

{

rrT
}

6= 0

◮ Widely Linear (WL) processing
⊲ improves performance by fully exploiting the non-circularity of r and taking advantage of the

second-order statistics R & Ř [2]
⊲ constructs virtual measurements ⇒ saves the hardware resources VERSUS oversampling or using

several sensors

Subspace-based Widely Linear (WL) blind channel estimation

◮ Existing work is based on SVD [3, 4]
⊲ computational complexity is much higher in the WL case

⋆Propose a subspace-based WL blind channel estimation scheme based on the iterative power method
for the WL Constrained Minimum Variance (WL-CMV) CDMA receiver for non-circular signals

System Model and Receiver

The received vector: r(i) =
√

E1b1(i)C1h1 + v(i) + η(i) + n(i) ∈ C
M

◮ b1(i) ∈ {±1}: the i-th Binary Phase Shift Keying (BPSK) symbol for the desired user 1 with unit variance
◮ C1 ∈ R

M×L (Toeplitz matrix): code matrix of the desired user
◮ h1 ∈ C

L: complex channel vector with normalization
◮ n(i) ∈ C

M×1: AWGN with power spectrum density N0

◮ v(i),η(i): Multi-User Interference (MUI) part and Intra-/Inter-Symbol Interference (ISI) part

Linear receiver
r ∈ C

M

y = wHr

[·] → T → [̃·]

Bijective Transformation

WL receiver
augmented: r̃ =

[

rT , rH
]T

/
√
2 ∈ C

2M

y = w̃Hr̃

2nd-order
statistics:

R ∈ C
M×M

augmented covariance matrix

R̃ = E
{

r̃(i)r̃H(i)
}

=
1

2

[

R Ř

Ř∗ R∗

]

∈ C
2M×2M (1)

Bijective
Transformation

Widely Linear Receiver

Widely Linear
Channel Estimation

WL Processing

T {·}

rr(t) r̃

w̃

ˆ̃
h

y
g(T − t)

t = Ts

WL-CMV receiver:

w̃ =
R̃−1C̃1h̃1

h̃H
1 C̃

H
1 R̃

−1C̃1h̃1

, C̃1 =
[

C1 0

0 C1

]

/
√
2

(2)
need channel estimation ˆ̃

h1 → h̃1

Subspace-based WL Channel Estimation

R̃ =
[

Ũs Ũn

]

[

Λ̃s +
N0

2 IK 0

0
N0

2 I2M−K

]

[

Ũs Ũn

]H

◮ Λ̃s = diag {λ1, · · · , λK}: singular values
◮ Ũs ∈ augmented signal subspace
◮ Ũn ∈ augmented noise subspace
◮ Orthogonality ⇒ ŨnC̃1h̃1 = 0

Optimization problem for WL subspace-based channel estimation:
ˆ̃
h1 = argmin

h̃1

h̃H
1 C̃

H
1 ŨnŨ

H
n C̃1h̃1, ‖h̃1‖ = 1

the power of the R concept [7]

Simplified optimization problem:
ˆ̃
h1 = argmin

h̃1

h̃H
1 Wh̃1, ‖h̃1‖ = 1 with W = C̃H

1 R̃
−mC̃1 ∈ C

L×L, m = 1, 2, · · · (3)

ˆ̃
h1: singular vector
→ the smallest
singular value of W

WL iterative power method:

h̃1(i) =
(I2L − βW ) h̃1(i− 1)

∥

∥

∥
(I2L − βW ) h̃1(i− 1)

∥

∥

∥

, β = 1/tr{W } (4)
◮ h̃1(i) → h̃1 with

sign ambiguity

⋆with (4): SVD is avoided to solve (3) ⇒ simplifies the implementation
⋆WL channel estimation: the phase ambiguity reduces to a sign ambiguity

Adaptive Algorithms

(4) should also be updated with

W (i) = C̃H
1 R̃

−m(i)C̃1, m = 1, 2, 3, β(i) =
1

tr{W (i)}. (5)

Two adaptive algorithms based on Recursive Least Squares (RLS):
◮ Augmented RLS (A-RLS): directly utilizes r̃(i)
◮ Structured RLS (S-RLS): exploits block conjugate structure of R̃(i) in (1)

Aim: estimate h̃1(i) and w̃(i) at time i
Algorithm:

1. Update R̃−1(i) ⇐ given r̃(i)

2. h̃1(i)
(4)(5)⇐ R̃−1(i) ⇐ given m, C̃1

3. Update receiver w̃(i)
(2)⇐ R̃−1(i), h̃1(i)

⊲ Update R̃−1(i) in A-RLS

R̃−1(i) = λ−1R̃−1(i− 1)− λ−1k(i)r̃H(i)R̃−1(i− 1), (6)

k(i) =
λ−1R̃−1(i− 1)r̃(i)

1 + λ−1r̃H(i)R̃−1(i− 1)r̃(i)
, λ: forgetting factor

⊲ In S-RLS, an efficient way to update R̃−1(i) as in [5, 6]

R̃−1(i) =

[

P (i) Q(i)
Q∗(i) P ∗(i)

]

, (7)

Key advantage of S-RLS over A-RLS
◮ structured manner

⇒ more efficient and lower complexity

⋆ A-RLS S-RLS
Initializationa R̃−1(0) = δaI2M P (0) = δpIM ,Q(0) = δqIM

R̃−1(i) by (6) update P (i),Q(i)

h̃1(i) by (4) use structured R̃−1(i) in (5)
Complexity 2M M

aScalars δa, δp, δq ⇒ numerical stability

Complexity Analysis of Adaptive Channel Estimation Algorithms
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⇐Fig.: total No. of complex “+” and “×” per
iteration per symbol compared to M

Considered Adaptive Schemes with m = 1, 2, 3:
◮ Linear RLS (L-RLS)
◮ Proposed WL-A-RLS
◮ Proposed WL-S-RLS

⇒ WL-A-RLS: high complexity
⇒ WL-S-RLS with m = 1 ≈ L-RLS with m = 3

Simulation Results
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Simulation setup:√
CDMA system with K = 12 users√
Random spreading sequences of length N = 32√
BPSK-modulated signals (strictly non-circular)√
Multipath block-fading channel: length L = 3 and
power delay profile [0,-3,-6] dB√
Input SNR = 12 dB√
Dynamic case: at bit 1000, 6 users with 10 dB more
power enter the channel

◮ Channel estimation MSE in dynamic case
⊲ WL > L and robust in the dynamic case
⊲ m = 2 is sufficient for WL
⊲ WL-S-RLS slightly better than WL-A-RLS but

with much lower complexity
◮ Output SINR for WL-CMV receiver
⊲ WL has ≥ 3 dB gain over L
⊲ WL channel estimation

directly applied to
=⇒ blind WL

receivers

Conclusions

◮ Propose a subspace-based WL blind channel estimation based on iterative power
technique
⊲ non-circular signals ⇒ WL processing
⊲ Completely avoids computing SVD

◮ Adaptive algorithms for WL-CMV receiver: WL-A-RLS and WL-S-RLS
⊲ WL-S-RLS applies the structured property of R̃

⇒ a faster convergence and lower complexity than WL-A-RLS
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