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Head-Related Transfer Functions

HRTFs:
- parameterize the transformations for the acoustic signals from source to ear canals.

- key component for spatial audio perception in AR/VR.
- determined by structure of the head (& ear)
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HRTF individualization: get personalized HRTFs for every individual

- Acoustical measurement; Costly, inconvenient and
- Numerical simulation using 3D scan of upper body / ear; thus non-scalable

- HRTF prediction by data-driven learning-based approaches
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Problems in Learning-based HRTF Prediction

Existing learning-based HRTF prediction approaches:

Limitations:
- Limited representation of the full structural attributes of ears
- Constraint from generality of the HRTF database
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Our Goals

3D Deep Neural Networ)k

3D ear shape representation from
a large-scale dataset

- Establish a lower bound of HRTF prediction error from different ear-related input

- Explore possibility of using deep learning as a computationally-efficient alternative to
numerical simulation
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Methodology

Ear Data

scan acquisition cropping voxelization mirroring
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Methodology

HRTF Data sphorical | CEf

coordinate

- Simulated far-field HRTFs system
- 30 frequency bins ranging from 1kHz-12kHz
- 360 directions parameterized by spherical coordinate system:
36 azimuths: [0°: 10° : 360°)
10 elevations: [-30° : 10° : 60°]

HRTF representations:

HRTF tensor: 3D tensor with 360 HRTF magnitudes
embedded based on spatial coordinates.
- Retains spatial information of HRTF.

HRTF vector: a flat vector with 360 magnitudes.
- Simple and space-efficient.
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Methodology

Convolutional Neural Network Regression model
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CNN-Reg:

Design choice:

- Train 30 CNN-Reg models, each predicting
HRTF magnitudes across 360 directions on 1
frequency bin.

Design considerations:

- Response on different frequency may rely on
different set of features;

- Dimension of output vector influences the size
of fully-connected layer which is a major
bottleneck for network footprint.
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Methodology

U-shaped Network Regression model

UNet-Reg:

Design choice:
- Train 30 UNet-Reg models.

g

- Domain-inspired design: Use UNet Encoﬂng_s.oc%_ )

architecture to allow for spatial

correspondence  between ear
shape and HRTF tensor.

Advantages:

- Scalability to denser HRTF spatial
grid.

- Scalability to near-field HRTF
prediction.

- Fewer network parameters: 35k
vs. 17m(CNN-Reg)
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Methodology

Experiment Methodology

Loss function / evaluation:
- Spectral distance error (SDE) in dB: the lower the better

1 h(6,,f) ‘
SDE e 20log ————=
Training scheme:
- 1290 ear-HRTF data divided into 1000 for training and 290 for evaluation.
- 5-fold cross validation.
Baselines for evaluation:

1. genHRTF: KEMAR simulated HRTF
2. pop-avg: population average of HRTFs in training set.
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Comparison with baseline genHRTF
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CNN/UNet-Reg vs. genHRTF:

Our methods significantly outperform genHRTF at all frequencies, proving the need for
individualization.
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Comparison with baseline pop-avg
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CNN/UNet-Reg vs. pop-avg:
Our methods outperform pop-avg by ~1dB.
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Comparison with prior works
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CNN/UNet-Reg vs. SPCA[Zhang20] & [Chen19]:
Our methods outperform both prior works.

CNN-Reg UNet-Reg| Zhang20* Chenl9* genHRTF
SDEy 1.67 1.84 3.24 3.43 3.63
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Visualization of prediction SDE from CNN-Reg
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Other results

Effect of voxelization

Input Grid 16 x 16 x 16 32 x 32 x 32 64 x 64 x 64

CNN-Reg 1.49+0.36 1.38+0.38 1.57+0.43

UNet-Reg  1.61 +0.45 1.53+0.38 1.521+0.41

Comparison with numerical simulation

SDE y Speed v
CNN/UNet-Reg 1.38 dB / 1.52dB 3-8 ms/ear
Numerical simulation - 20-30 min/ear
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Conclusions

Summary

Our contributions:

- We proposed two DNN models that predict HRTFs from 3D ear tensors.

- We trained the models with a large-scale ear-HRTF dataset and achieved highest HRTF
prediction accuracy in efforts to identify the lower bound of error in learning-based HRTF
prediction.

- We've shown the potential and bottleneck of using learning-based HRTF prediction as a
computationally efficient alternative to numerical simulation.

Future works:

- Include perceptual loss functions during DNN training.

- Further improve model design in terms of computational efficiency and representational
capability.
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