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- Parameters: 𝐾 = 100, 𝛿! = 10"#, 𝑞! = 10"$ 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑘 = 1,2, … , 100, 𝑑 = 10#, 𝜇 = 1, 𝜆 = 1, 𝐶 = 1, 𝑎𝑛𝑑 𝐺 = 5.
- The bounds of 𝜎!%, utility 𝒰 𝑇 and transmission rate 𝑅&',! are plotted for varying 𝜖! by using 𝜎!% as a parameter. 
- Trade-offs between three metrics are observed: the utility increases and transmission rate decreases as 𝜖! grows, i.e., the 

target privacy becomes weaker.
- The proposed scheme accounts the differential privacy the tightest compared to using the other privacy accounting 

methods, which results in a smaller noise level 𝜎!% to achieve the same 𝜖!, 𝛿! −LDP after 𝑇 = 70,000 iterations and, 
accordingly, a greater guaranteed value of utility and a smaller worst case transmission rate. ⟹ Better Trade-offs

- Due to the condition 𝑞! <
)

)*+!
, the domain of 𝜖! is restricted, and it restricts the ranges by the black dashed lines in the 

graphs. By the condition 𝜎! ≥ 1, the curves show saturating behavior when 𝜎! reaches to 1 as 𝜖! increases. 

Global Model

Local Model

Private Data

1. Federated Learning (FL)

2. Privacy Preserving Scheme

The training data can be partially recovered by using the model.
Þ Privacy preserving scheme is required,
Þ while minimizing learning performance degradation from it.

Training
Data Model

?

Adversary

The global model is achieved by merging locally trained models. 
Þ More private than a centralized model: users’ data remain at users.
Þ It costs iterative communication for every weight updates.

Motivation – Privacy of Machine Learning
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Main Contribution

1. We analyze the bounds of privacy, utility, and
transmission rate of an FL model with stochastic 
gradient descent (SGD) algorithm and Gaussian 
mechanism.

2. The trade-offs between three metrics are observed: 
Privacy ⇑ – Utility ⇓ – Transmission Rate ⇑

3. The trade-offs are improved by adopting an enhanced 
privacy accounting method over many iterations. [1]

4. A generalized FL model is assumed: 
heterogeniety of users, variable query sensitivity of the
privacy mechanism, parameterized gradient norm 
clipping threshold, etc. 
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System Modeling

Algorithm: FL-SGD with Gaussian Mechanism 
Input: User	datasets	 𝒟! !"#

$ ,	data	sampling	rates	 𝑞! !"#
$ ,	

sampled	datasets	 𝒥!
%

!"#

$
, total	sampled	dataset	𝒥(%) =

⋃!"#
$ 𝒥!

(%),	loss	function	ℒ! 𝒘 % , 𝒥!
% = #

𝒥!
" ∑

)∈𝒥!
" ℓ 𝒘 % , 𝑥 .

Parameters:	learning	rate	𝜂% , noise scale	 𝜎! !"#
$ ,	clipping	norm	

threshold	𝐶.
Initialize	𝒘(+) randomly
for 𝑡 ∈ [0: 𝑇 − 1] do Training 𝑇 iterations in total

for	𝑘 ∈ [𝐾] Training user 𝑘’s local model
Download	𝒘(%)

Sample	𝒥!
(%) from	𝒟! with	probability	𝑞!

Compute	gradient
𝒈!

% 𝒘 % , 𝒥!
% ← ∇𝒘ℒ! 𝒘 % , 𝒥!

%

Gradient	Norm	Clipping

>𝒈!
(%) = 𝒈!

"

./0 #, 𝒈!
" /3

Add	Gaussian	Noise
?𝒈!
(%) =ℳ! >𝒈!

% = >𝒈!
(%) +𝒩 𝟎, 𝐶4𝜎!4𝜤5

Upload	?𝒈!
(%)

Weight	Update

𝒘(%6#) = 𝒘(%) − 𝜂% ⋅ ∑!"#$ 𝒥!
"

𝒥 " ?𝒈!
(%)

Output:	𝒘(7)

Performance Metrics
Local Differential Privacy (LDP) of User 𝒌
Definition. 𝜖! , 𝛿! − Local	Differential	Privacy	(LDP)
Gaussian	mechanism	ℳ! is	 𝜖! , 𝛿! −LDP	w.r.t. dataset	𝒟! ,	if	∀
two	neighboring datasets	𝐷~𝐷′ ⊆ 𝒟! and	∀𝒮 ⊆ 𝑅𝑎𝑛𝑔𝑒(ℳ!)

Pr ℳ! >𝒈!(𝐷) ∈ 𝒮 ≤ 𝑒8! ⋅ Pr ℳ! >𝒈! 𝐷9 ∈ 𝒮 + 𝛿! .

Gaussian Mechanism for 𝜖! , 𝛿! −LDP 
A	Gaussian	mechanism	ℳ! >𝒈!

% = >𝒈!
(%) +𝒩 𝟎, 𝐶4𝜎!4𝜤5

satisfies 𝜖! , 𝛿! −LDP	
if	𝛿! ≥

:
;
exp(− 𝐶𝜎!𝜖! 4/2).

Global Utility is defined by the multiplicative inverse of the 
convergence rate, i.e., 

𝒰 𝑇 =
1

𝔼 ℒ 𝒘 7 , 𝒥(7) − ℒ 𝒘∗, ⋃!"#
$ 𝒟!

.

𝒘∗ = 𝑎𝑟𝑔 min
𝒘∈ℝ#

ℒ 𝒘 % , ⋃!"#
$ 𝒟! : optimal weight vector

Transmission rate is defined by the differential entropy of a 
noisy gradient: 𝑅%>,! = ℎ ?𝒈!

% .

Comparison with other Privacy Accounting Methods
Moment Accountant (MA)

𝜎!4 ≥
4𝑞!4𝑇
1 − 𝑞!

2
𝜖!4
log

1
𝛿!
+
1
𝜖!
+ 𝒪 log 𝛿!?#

Advanced Composi4on 1 (AC1)

𝜎!4 ≥
4𝑞!4

1 − 𝑞!
⋅
2
𝜖+
log

4
5𝛿+

Advanced Composition 2 (AC2) 

𝜎!4 ≥
4𝑞!4

1 − 𝑞!
⋅
8𝑇log 𝑒 + 𝜖!

𝛿!
𝜖!4

FL + privacy preserving scheme

Privacy, Utility, Transmission Rate should be jointly considered.
Privacy after 𝑇 iterations should be tightly accounted. 
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• We set the number of iterations 𝑇 and obtain the range of 𝜎!4
that can achieve a target LDP level (𝜖! , 𝛿!).

• The noise variance 𝜎!4 connects the target privacy (𝜖! , 𝛿!) with 
the bounds of utility 𝒰 𝑇 and transmission rate 𝑅@A,! : 

• Privacy ⇑ & 𝜖! ⇓ – 𝜎! ⇑ – Utility ⇓ – Transmission Rate ⇑.

Þ Trade-off relationship 

• These three methods are commonly used for privacy analysis. 
• The bound of 𝜎!4 in 𝑻𝒉𝒆𝒐𝒓𝒆𝒎 𝟏. is smaller than that of (MA).
• (MA) is shown to outperform (AC1) and (AC2). [2]
Þ The proposed bound of 𝜎!4 is expected to be the smallest. 

Theoretical Bounds on the Metrics

𝑻𝒉𝒆𝒐𝒓𝒆𝒎 𝟏. F𝑜𝑟 𝜖! > 2log 𝛿!?# max 𝛿! ,
#

B!
$ CD %

&!'!

,

𝑞! <
#

#EB!
, 𝑎𝑛𝑑 𝜎! ≥ 1, u𝑠𝑒𝑟 𝑘9𝑠 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑠𝑚ℳ!

𝑖𝑠 𝜖! , 𝛿! − 𝑳𝑫𝑷 𝑎𝑓𝑡𝑒𝑟 𝑇 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 𝑖𝑓

𝜎!4 ≥
4𝑞!4𝑇
1 − 𝑞!

2
𝜖!4
log

1
𝛿!
+
1
𝜖!
−
2
𝜖!4

log(2 log 𝛿!?#) + 1 − log 𝜖!

+𝒪 CFG$(HIJK!
(%)

CFG K!
(% .

𝐹𝑜𝑟 𝑎 𝜇 − 𝑠𝑚𝑜𝑜𝑡ℎ 𝑎𝑛𝑑 𝜆 − 𝑠𝑡𝑟𝑜𝑛𝑔𝑙𝑦 𝑐𝑜𝑛𝑣𝑒𝑥 𝑙𝑜𝑠𝑠 ℒ 𝒘; 𝒮
𝑤. 𝑟. 𝑡. 𝑎 𝑑 − 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙 𝑤𝑒𝑖𝑔ℎ𝑡 𝑣𝑒𝑐𝑡𝑜𝑟 𝒘 ∈ ℝ5 𝑔𝑖𝑣𝑒𝑛
𝑎𝑛 𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦 𝑠𝑢𝑏𝑠𝑒𝑡 𝒮 𝑜𝑓 𝒟 =∪!"#$ 𝒟! , 𝑖. 𝑒. , 𝒮 ⊆ 𝒟, 𝑎𝑛𝑑 𝑓𝑜𝑟
𝑎 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 𝜂% =

L
3M%

,

𝒰 𝑇 ≥
𝜆4𝑇
𝜇𝐺4

min
1
2
,

1
1 + 𝑑𝜎4

𝑤ℎ𝑒𝑟𝑒 𝜎4 =
∑!"#$ 𝒟! 𝑞!𝜎! 4

∑!"#$ 𝒟! 𝑞! 4 , 𝑎𝑛𝑑 𝐺 𝑖𝑠 𝑡ℎ𝑒 𝑚𝑎𝑥𝑖𝑚𝑢𝑚

𝑛𝑜𝑟𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡. 𝑇ℎ𝑒 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 𝑅%>,! 𝑜𝑓
𝑢𝑠𝑒𝑟 𝑘 𝑤𝑡ℎ 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 𝑛𝑜𝑖𝑠𝑒 𝒩 0, 𝐶4𝜎!4𝑰5 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑠

𝑅@A,! ≤ 𝑑 log4
2𝜋𝑒𝐶4𝜎!

𝑑
(𝑏𝑖𝑡𝑠 𝑝𝑒𝑟 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡).
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