
FastDCTTS: Efficient Deep
Convolutional Text-to-Speech

Minsu Kang, Jihyun Lee, Simin Kim, Injung Kim

Deep-learning Lab.

Handong Global University

Contents

• Introduction

• Quantitative fidelity metric for optimization (EMCD)

• FastDCTTS

• Computational optimization

• Fidelity improvement

• Experiments

• Conclusion

2

Neural TTS for Limited Environment

• End-to-end neural TTS

• Neural TTS for limited environments w/o GPU

• Conventional encoder-decoder models ➔ slow

• Tacotron[Wang17], Tacotron2[Shen17], DCTTS[Tachibana18], Transformer-TTS [Li18]

• Non-autoregressive models: fast, but rely on parallel computation ➔ requires GPU

• FastSpeech[Ren19], FastSpeech2[Ren20], AlignTTS[Zeng20]

• TTS for limited environments w/o GPU requires computational optimization

3

“Hello everyone!”

Text

Wav-signal

Text2Mel

Converter
Vocoder

Neural TTS

Contributions

• Highly-optimized neural TTS, FastDCTTS, that generates speech signals in real-time on a single

CPU thread

• Multiple techniques to improve synthesis speed and fidelity

• Compared with DCTTS, 1.76% computation, 2.75% parameters, and 7.4x faster

• Group highway activation, a novel lightweight version of the Highway network

• Elastic Mel-cepstral Distortion(EMCD), a novel objective metric to evaluate the quality of a mel-

spectrogram focusing on skipping and repeating error.

• Quantitative and qualitative evaluation of multiple acceleration and fidelity improvement

techniques using EMCD

4

Baseline model: DCTTS

• Deep convolutional Text-to-Speech [Tachibana18]

• Text encoder
: Input text ➔ two character embedding sequences, K(key) and V(value)

• Audio encoder
: Previously generated mel-spectrogram ➔ audio embedding sequence, Q (query)

• Attention module
: K, V, Q ➔ alignment between text and mel (A)

• Audio decoder
: Generates mel-spectrogram from A, V and Q

➔ Composed of convolution operation

• Why DCTTS?
(1) Many acceleration techniques available for CNNs

ex) Depthwise separable conv.[Howard17], network pruning [Han15], etc.

(2) Fast training and evaluation

5

Figure: diagram of DCTTS [Tachibana18]

Optimization Techniques

6

• Computational optimization

• Depthwise separable convolution

• Group highway activation (proposed)

• Network size reduction

• Network pruning with weight normalization trick

• Fidelity improvement

• Positional encoding

• Scheduled sampling

• Quantitative evaluation of output quality using EMCD during optimization

Elastic Mel-Cepstral Distortion (EMCD)

• EMCD: A novel quantitative metric to measure speech quality focusing on
skipping and repeating
• Measures MCD computed from the best alignment found by elastic matching.

• Penalty weights 𝒘𝒎 ∈ {𝑤ℎ𝑜𝑟 = 1,𝑤𝑣𝑒𝑟 = 1,𝑤𝑑𝑖𝑎𝑔 = 2}

7

𝑫 𝒊, 𝒋 = 𝒘𝒎 ×𝑴𝑪𝑫 𝒙𝒊, 𝒚𝒋 +𝐦𝐢𝐧 𝑫 𝒊, 𝒋 − 𝟏 ,𝑫 𝒊 − 𝟏, 𝒋 , 𝑫 𝒊 − 𝟏, 𝒋 − 𝟏

𝑀𝐶𝐷 𝑖, 𝑗 = 2σ𝑑=1
𝐷 𝑥𝑑 𝑖 − 𝑥𝑑 𝑗 2 [Kubicheck 93]

, 𝑤ℎ𝑒𝑟𝑒 𝑖 = 1,… , 𝑇𝑠𝑦𝑛 , 𝑗 = 1,… , 𝑇𝑔𝑡
𝑇𝑠𝑦𝑛, 𝑇𝑔𝑡: length of syn. and GT mel

𝑚 = 𝑎𝑟𝑔𝑚𝑖𝑛 𝐷 𝑖, 𝑗 − 1 ,𝐷 𝑖 − 1, 𝑗 , 𝐷 𝑖 − 1, 𝑗 − 1
𝑤 = [𝑤ℎ𝑜𝑟 , 𝑤𝑣𝑒𝑟 , 𝑤𝑑𝑖𝑎𝑔]

(left) good quality speech, (right) speech with repeating

Compared to MCD-DTW[Battenberg20], EMCD

assigns different penalty weights to hor, ver, and

diag transitions to measure the difference caused

by skipping and repeating more effectively.

Computational optimization techniques

• Depthwise separable convolution [Howard17]

• In image processing, 𝑂 𝐷𝐾
2𝑀𝑁𝐷𝐹

2 ⇒ 𝑂 𝐷𝐾
2𝑀𝐷𝐹

2 + 𝑂 𝑀𝐷𝐹
2𝐷𝐹

2

3D conv (WxHxC) ➔ 2D DW conv + 1D pointwise conv

• In speech processing, 𝑂 𝐷𝐾𝑀𝑁𝐷𝐹 ⇒ 𝑂 𝐷𝐾𝑀𝐷𝐹 + 𝑂 𝑀𝐷𝐹𝐷𝐹
2D conv (time x channel) ➔ 1D DW conv + 1D pointwise conv

➔ Less effective in speech synthesis

• Result

• In theory, requires only 36.3% of operations (275B ➔ 100B)

• In experiments, increased synthesis time by 2.68x (6.85 sec ➔ 18.16 sec)

➔ Not used in the following experiments

8

𝐷𝐾: 𝑘𝑒𝑟𝑛𝑒𝑙 𝑠𝑖𝑧𝑒
𝑀: # 𝑜𝑓 𝑖𝑛𝑝𝑢𝑡 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠
𝑁: # 𝑜𝑓 𝑜𝑢𝑡𝑝𝑢𝑡 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠
𝐷𝐹: 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑚𝑎𝑝 𝑠𝑖𝑧𝑒
∗: 𝑐𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛

Computational optimization techniques

9

• Highway activation

• Highway network [Srivastava15]

- 𝑦 = 𝑻 𝒙,𝑾𝑻 𝐻 𝑥,𝑊𝐻 + 𝐂 𝐱,𝑾𝑪 𝑥 (usually, 𝐶 𝑥,𝑊𝐶 = 1 − 𝑇 𝑥,𝑊𝑇)

➔ increases computations by 2 or 3 times

• Group highway activation: a simplified form of Highway activation

- A group of elements share the same gate value

𝑦 = 𝑇𝐺 𝑥,𝑊𝑇𝐺 𝐻 𝑥,𝑊𝐻 + (1 − 𝑇𝐺 𝑥,𝑊𝑇𝐺)𝑥

- Computation: 𝟏 +
𝟏

𝐠
/𝟐 of ordinary highway activation

• 𝑇 𝑥,𝑊𝑇 , 𝐶 𝑥,𝑊𝐶 : transformation and carry gate

• 𝑥, 𝑦: input and output feature map

• 𝑊𝑇, 𝑊𝐶, 𝑊𝐻: parameters of 𝑇 ⋅ , 𝐶 ⋅ , 𝐻 ⋅
• 𝑔: group size

Figure: elementwise representation of gating

mechanism in Highway(left) vs. Group Highway(right, 𝒈 =2)

channel / group
𝒈 = 𝟏 𝒈 = 𝟐

Computational Optimization Techniques

• Network size reduction
• Reduce the number of layers and channels measuring output quality by EMCD

• Network pruning for CNN [Li16]

• Remove 10% of less important filters (by L1-norm)

• Modified for group highway activation

• Weight normalization trick
1. Train model applying weight normalization

2. Pruning (reduces model capacity)

3. Deactivate weight normalization and fine-tune reduced model

10

Attempted values

Layers 12 9 6

Channels 256 192 128 64

Table: # of layers and channels reduced
𝑁 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠

(output channels)1D convolution filters

10% filter pruning

…

…

Pruned 1d convolution filters

Figure: pruning filters for CNN [Li16]

𝐷𝐾

1

𝑀 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠

: Pruned: less important filter

Fidelity Improvement Techniques

• Positional encoding for TTS [Li 18]

• To improve attention stability by helping to learn the temporal relation

• Scheduled sampling [Bengio15]

• Learns mainly from ground truth ➔ increase portion of generated mel-spec. as
learning progresses

11

𝑥𝑖
′ = 𝑥𝑖 + 𝛼𝑃𝐸 𝑝𝑜𝑠, 𝑖 , 𝑤ℎ𝑒𝑟𝑒 𝑃𝐸 𝑝𝑜𝑠, 𝑖 = ቐ

sin(
𝑝𝑜𝑠

𝑏𝑎𝑠𝑒2𝑘/𝑑𝑖𝑚
) 𝑓𝑜𝑟 𝑖 = 2𝑘

cos(
𝑝𝑜𝑠

𝑏𝑎𝑠𝑒2𝑘/𝑑𝑖𝑚
) 𝑓𝑜𝑟 𝑖 = 2𝑘 + 1

𝛼: trainable weight

Experiments

• Settings
• Dataset

• LJ-speech[Ito17]

- English, a female single speaker, about 24 hours

• Korean Single Speaker (KSS) [Park19]

- Korean, a female single speaker, 12+ hours

➔ 70% for training, 10% for validation, and 20% for test

- A large portion of validation and test set for reliable evaluation.

- Relatively small portion for training

• Experimental setting
• Training: NVIDIA GTX-1080 GPU

• Synthesis: single thread of Intel Xeon E3-1240 v3 CPU (3.40 GHz), batch_size = 1

12

Experiments

• Group highway activation
• Amount of computation

➔ In theory, reduced to 75% of highway convolution

• Synthesis time and speech quality
➔ Residual DCTTS: ½ of synthesis time of baseline, but increased EMCD

➔ Group Highway DCTTS: reduced syn-time by 7% of baseline, decreased EMCD

13

Model Synthesis time

EMCD

(the lower, the better)

LJ KSS

Highway (GPU) 1.28 sec (1.00 x) -
9.45 10.36

Highway (CPU) 6.85 sec (5.35 x) -

Residual (CPU) 3.85 sec (3.00 x) 43.8% reduc. 12.93 13.59

Group Highway

(CPU)
6.37 sec (4.98 x) 7.0% reduc. 9.10 9.29

Table: comparison of the baseline model(𝐁𝐚𝐬𝐞 𝐇𝐂), residual DCTTS(𝐑𝐞𝐬𝐃𝐂𝐓𝐓𝐒), and Group highway DCTTS(𝐆𝐇 𝐃𝐂𝐓𝐓𝐒)

Experiments

• Network size reduction
• Reducing # of channels and layers increases speed and degrades output quality.

• GH_C128 exhibited a good trade-off

• GH_L6_C64 was the fastest, but poor output quality ➔ improve by fidelity improvement techniques

14

Baseline GH GH_C192 GH_C128 GH_C64 GH_L9_C64 GH_L6_C64

of layers
(TextEnc, AudioEnc, AudioDec)

14, 13, 11 14, 9, 9 14, 6, 6

of channels 256 192 128 64

Table: comparison of parameters between various network parameters of models

Figure: the effect of network size reduction on synthesis time and speech quality.

(GH:Group highway activation, La: # of layers and Cb: # of channels)

Experiments

• Network pruning with weight normalization trick
• Removed 10% of convolution filters by network pruning [Li16]

• Synthesis time was reduced by 18.09% (1.05sec ➔ 0.86 sec)

• Often produced unrecognizable speech

• Weight normalization trick
• Train model applying weight-norm

• Pruning

• Deactivate weight-norm to compensate the reduced capacity and fine-tune the reduced model

➔ Significantly improves the output quality of small capacity models

15

model
Weight normalization

Synthesis time
on → on on → off

LJ
Speech

GH_L6_C64 30.59 15.26 1.05

GH_L6_C64 (10% pruned) Unrecognizable 16.24 0.86

KSS
GH_L6_C64 46.92 9.75 1.05

GH_L6_C64 (10% pruned) Unrecognizable 10.69 0.86

Table: the effect of the pruning and weight normalization trick

Experiments

• Positional encoding and scheduled sampling
• Positional encoding improves speech quality

➔ Decreases EMCD values to 9.55 (LJSpeech) and 9.39 (KSS)

• Scheduled sampling did not lead to any improvement

16

Dataset
Improvement in EMCD
by positional encoding

Scheduled sampling

LJSpeech
16.24 ➔ 9.55

(41.19% reduction)
No improvement

KSS
10.69 ➔ 9.39

(12.16% reduction)

Table: the effect of the positional encoding and scheduled sampling

Experiments
• FastDCTTS

• Synthesis time on a single CPU thread: 0.92 sec
➔ Faster than 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝐶𝑃𝑈(6.85 sec.) and 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝐺𝑃𝑈(1.28 sec.)

• Speech quality is comparable to the baseline model, DCTTS

17

Baseline model FastDCTTS

of computations 275,098,419,200
4,835,728,000

(1.6% of baseline)

of params 23,896,094
657,728

(2.75% of baseline)

𝑠𝑦𝑛𝑡ℎ𝑒𝑠𝑖𝑠 𝑡𝑖𝑚𝑒𝑐𝑝𝑢 6.85 sec.
0.92 sec.

(7.45x faster)

EMCD (LJ, KSS) 9.45, 10.36 9.55, 9.39

MOS (LJ, KSS) 2.42, 2.62 2.45, 2.74

Speech samples

KSS script: “한국은 천연자원이
풍부하지 않습니다.”

(“Korea is not rich in natural resources.”)

LJ script: “The most trifling acts were

magnified into offenses.”

Table: comparison between baseline model and FastDCTTS

KSS-70% KSS-70%KSS-90% KSS-90%LJ-70%LJ-90% LJ-70%LJ-90%

Conclusion

• A novel lightweight neural TTS, FastDCTTS that synthesizes speech
in real-time without CPU.
• Based on DCTTS, apply multiple acceleration and fidelity improvement

techniques.

• 1.76% computation, 2.75% parameters, and 7.4x faster

• A few novel techniques
• A novel objective metric EMCD

• Group highway activation

• Weight normalization trick

18

Thank you for attention!

