FastDCTTS: Efficient Deep Convolutional Text-to-Speech

Minsu Kang, Jihyun Lee, Simin Kim, Injung Kim

Deep-learning Lab. Handong Global University

Contents

- Introduction
- Quantitative fidelity metric for optimization (EMCD)
- FastDCTTS
 - Computational optimization
 - Fidelity improvement
- Experiments
- Conclusion

Neural TTS for Limited Environment

End-to-end neural TTS

- Neural TTS for limited environments w/o GPU
 - Conventional encoder-decoder models → slow
 - Tacotron[Wang17], Tacotron2[Shen17], DCTTS[Tachibana18], Transformer-TTS [Li18]
 - Non-autoregressive models: fast, but rely on parallel computation → requires GPU
 - FastSpeech[Ren19], FastSpeech2[Ren20], AlignTTS[Zeng20]
 - TTS for limited environments w/o GPU requires computational optimization

Contributions

- Highly-optimized neural TTS, FastDCTTS, that generates speech signals in real-time on a single CPU thread
 - Multiple techniques to improve synthesis speed and fidelity
 - Compared with DCTTS, 1.76% computation, 2.75% parameters, and 7.4x faster
- Group highway activation, a novel lightweight version of the Highway network
- Elastic Mel-cepstral Distortion(EMCD), a novel objective metric to evaluate the quality of a melspectrogram focusing on skipping and repeating error.
- Quantitative and qualitative evaluation of multiple acceleration and fidelity improvement techniques using EMCD

5

2021

- OD O

tro Toronto Convention Cent

Baseline model: DCTTS

Deep convolutional Text-to-Speech [Tachibana18]

• Text encoder

: Input text \rightarrow two character embedding sequences, K(key) and V(value)

• Audio encoder

: Previously generated mel-spectrogram → audio embedding sequence, Q (query)

- Attention module
 - : K, V, Q \rightarrow alignment between text and mel (A)
- Audio decoder
 - : Generates mel-spectrogram from A, V and Q
- → Composed of **convolution operation**

• Why DCTTS?

(1) Many acceleration techniques available for CNNs

ex) Depthwise separable conv.[Howard17], network pruning [Han15], etc.

(2) Fast training and evaluation

Figure: diagram of DCTTS [Tachibana18]

Optimization Techniques

Computational optimization

- Depthwise separable convolution
- Group highway activation (proposed)
- Network size reduction
- Network pruning with **weight normalization trick**

Fidelity improvement

- Positional encoding
- Scheduled sampling
- Quantitative evaluation of output quality using EMCD during optimization

Elastic Mel-Cepstral Distortion (EMCD)

- EMCD: A novel quantitative metric to measure speech quality focusing on skipping and repeating
 - Measures MCD computed from the best alignment found by elastic matching.

$$D(i,j) = w_m \times MCD(x_i, y_j) + \min\{D(i, j-1), D(i-1, j), D(i-1, j-1)\}$$

• Penalty weights
$$w_m \in \{w_{hor} = 1, w_{ver} = 1, w_{diag} = \sqrt{2}\}$$

$$\begin{split} MCD(i,j) &= \sqrt{2\sum_{d=1}^{D} (x_d[i] - x_d[j])^2} \ \text{[Kubicheck 93]} \\ \text{, where } i &= \{1, \dots, T_{syn}\}, j = \{1, \dots, T_{gt}\} \\ T_{syn}, T_{gt} \text{: length of syn. and GT mel} \\ m &= argmin\{D(i, j - 1), D(i - 1, j), D(i - 1, j - 1)\} \\ w &= [w_{hor}, w_{ver}, w_{diag}] \end{split}$$

Compared to MCD-DTW[Battenberg20], EMCD assigns different penalty weights to hor, ver, and diag transitions to measure the difference caused by skipping and repeating more effectively.

Computational optimization techniques

- Depthwise separable convolution [Howard 17]
 - In image processing, $O(D_K^2 M N D_F^2) \Rightarrow O(D_K^2 M D_F^2) + O(M D_F^2 D_F^2)$ 3D conv (WxHxC) \Rightarrow 2D DW conv + 1D pointwise conv
 - In speech processing, $O(D_K M N D_F) \Rightarrow O(D_K M D_F) + O(M D_F D_F)$
 - 2D conv (time x channel) \rightarrow <u>1D DW conv + 1D pointwise conv</u>
 - → Less effective in speech synthesis

D_K: kernel size M: # of input channels N: # of output channels D_F: feature map size *: convolution operation

- Result
 - In theory, requires only 36.3% of operations (275B → 100B)
 - In experiments, increased synthesis time by 2.68x (6.85 sec → 18.16 sec)
 - → Not used in the following experiments

Figure: 2D convolution (left) vs. 1D depthwise + 1D pointwise convolution (right)

2021

Toronto Convention Cer

Computational optimization techniques

- Highway activation
 - Highway network [Srivastava15]
 - $y = \mathbf{T}(\mathbf{x}, \mathbf{W}_T)H(\mathbf{x}, \mathbf{W}_H) + \mathbf{C}(\mathbf{x}, \mathbf{W}_C)\mathbf{x}$ (USUAlly, $C(\mathbf{x}, \mathbf{W}_C) = 1 T(\mathbf{x}, \mathbf{W}_T)$)
 - ➔ increases computations by 2 or 3 times

- $T(x, W_T)$, $C(x, W_C)$: transformation and carry gate
- x, y: input and output feature map
- W_T , W_C , W_H : parameters of $T(\cdot)$, $C(\cdot)$, $H(\cdot)$
- g: group size
- Group highway activation: a simplified form of Highway activation
 - A group of elements share the same gate value

 $y = T_G(x, W_{T_G})H(x, W_H) + (1 - T_G(x, W_{T_G}))x$

- Computation: $\left(1+\frac{1}{g}\right)/2$ of ordinary highway activation

Figure: elementwise representation of gating mechanism in Highway(left) vs. Group Highway(right, g =2) 2021

Computational Optimization Techniques

- Network size reduction
 - **Reduce the number of layers and channels** measuring output quality by EMCD

	Attempted values					
Layers	12	9	6			
Channels	256	192	128	64		

Table: # of layers and channels reduced

- Network pruning for CNN [Li16]
 - Remove 10% of less important filters (by L1-norm)
 - Modified for group highway activation
 - Weight normalization trick
 - 1. Train model applying weight normalization
 - 2. Pruning (reduces model capacity)
 - **3.** Deactivate weight normalization and fine-tune reduced model

Fidelity Improvement Techniques

• Positional encoding for TTS [Li 18]

$$x'_{i} = x_{i} + \alpha PE(pos, i) \text{ , where } PE(pos, i) = \begin{cases} \sin(\frac{pos}{base^{2k/dim}}) \text{ for } i = 2k \\ \cos(\frac{pos}{base^{2k/dim}}) \text{ for } i = 2k + 1 \end{cases}$$

 α : trainable weight

- **To improve attention stability** by helping to learn the temporal relation
- Scheduled sampling [Bengio15]
 - Learns mainly from ground truth → increase portion of generated mel-spec. as learning progresses

- Settings
 - Dataset
 - LJ-speech[lto17]
 - English, a female single speaker, about 24 hours
 - Korean Single Speaker (KSS) [Park19]
 - Korean, a female single speaker, 12+ hours
 - → 70% for training, 10% for validation, and 20% for test
 - A large portion of validation and test set for reliable evaluation.
 - Relatively small portion for training
 - Experimental setting
 - Training: NVIDIA GTX-1080 GPU
 - Synthesis: single thread of Intel Xeon E3-1240 v3 CPU (3.40 GHz), batch_size = 1

Group highway activation

- Amount of computation
 - → In theory, **reduced to 75%** of highway convolution
- Synthesis time and speech quality
 - → Residual DCTTS: ½ of synthesis time of baseline, but increased EMCD
 - → Group Highway DCTTS: reduced syn-time by 7% of baseline, decreased EMCD

Model	Synthesis	EMCD (the lower, the better)		
			LJ	KSS
Highway (GPU)	1.28 sec (1.00 x)	-	0 45	10.24
Highway (CPU)	6.85 sec (5.35 x)	-	7.40	10.56
Residual (CPU)	3.85 sec (3.00 x)	43.8% reduc.	12.93	13.59
Group Highway (CPU)	6.37 sec (4.98 x)	7.0% reduc.	9.10	9.29

Table: comparison of the baseline model(Base(HC)), residual DCTTS(ResDCTTS), and Group highway DCTTS(GH DCTTS)

- Network size reduction
 - Reducing # of channels and layers increases speed and degrades output quality.
 - GH_C128 exhibited a good trade-off
 - GH_L6_C64 was the fastest, but poor output quality *>* improve by fidelity improvement techniques

Figure: the effect of network size reduction on synthesis time and speech quality. (GH:Group highway activation, La: # of layers and Cb: # of channels)

		Baseline	GH	GH_C192	GH_C128	GH_C64	GH_L9_C64	GH_L6_C64	
	# of layers (TextEnc, AudioEnc, AudioDec)		14, 13, 11					14, 6, 6	2021
GLO	# of channels	25	6	192	128		64	•	ada June 6-11, 2021 14
RSI	S I T Y Table: comparison of parameters between various network parameters of models							pronto Convention Centre	

- Network pruning with weight normalization trick
 - Removed 10% of convolution filters by network pruning [Li16]
 - Synthesis time was reduced by 18.09% (1.05sec → 0.86 sec)
 - Often produced <u>unrecognizable speech</u>
 - Weight normalization trick
 - Train model **applying weight-norm**
 - Pruning
 - Deactivate weight-norm to compensate the reduced capacity and fine-tune the reduced model
 - → Significantly improves the output quality of <u>small capacity models</u>

	madal	Weight nor	Symthesis times		
	model	on ightarrow on	$\textbf{on} \rightarrow \textbf{off}$	Synnesis inne	
LJ	GH_L6_C64	30.59	15.26	1.05	
Speech	GH_L6_C64 (10% pruned)	Unrecognizable	16.24	0.86	
KSS	GH_L6_C64	46.92	9.75	1.05	
	GH_L6_C64 (10% pruned)	Unrecognizable	10.69	0.86	

Table: the effect of the pruning and weight normalization trick

Positional encoding and scheduled sampling

- Positional encoding improves speech quality
 - → Decreases EMCD values to 9.55 (LJSpeech) and 9.39 (KSS)
- Scheduled sampling did not lead to any improvement

Dataset	Improvement in EMCD by positional encoding	Scheduled sampling
LJSpeech	16.24 → 9.55 (41.19% reduction)	
KSS	10.69 → 9.39 (12.16% reduction)	No improvement

Table: the effect of the positional encoding and scheduled sampling

FastDCTTS

- Synthesis time on a single CPU thread: 0.92 sec
 - \rightarrow Faster than *baseline*_{CPU} (6.85 sec.) and *baseline*_{GPU} (1.28 sec.)
- Speech quality is comparable to the baseline model, DCTTS

	Baseline model				FastDCTTS			
# of computations	275,098,419,200				4,835,728,000 (1.6% of baseline)			
# of params		23,8	96,094		657,728 (2.75% of baseline)			
synthesis time _{cpu}	6.85 sec.				0.92 sec. (7.45x faster)			
EMCD (LJ, KSS)	9.45, 10.36			9.55, 9.39				
MOS (LJ, KSS)	2.42, 2.62			2.45, 2.74				
Speech samples KSS script: "한국은 천연자원이 풍부하지 않습니다." ("Korea is not rich in natural resources.") LJ script: "The most trifling acts were magnified into offenses."	KSS-90%	KSS-70%	LJ-90%	LJ-70%	KSS-90%	KSS-70%	LJ-90%	LJ-70%
THANDONG GLOBAL	Table: comparison between baseline model and FastDCTTS Canada June 6-11, 2021					June 6-11, 2021 17		

Metro Toronto Convention Centre

Conclusion

- A novel lightweight neural TTS, FastDCTTS that synthesizes speech in real-time without CPU.
 - Based on DCTTS, apply multiple acceleration and fidelity improvement techniques.
 - 1.76% computation, 2.75% parameters, and 7.4x faster
- A few novel techniques
 - A novel objective metric EMCD
 - Group highway activation
 - Weight normalization trick

Thank you for attention!