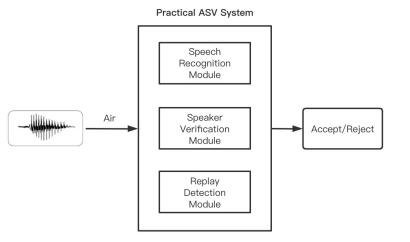


Attack on Practical Speaker Verification System Using Universal Adversarial Perturbations

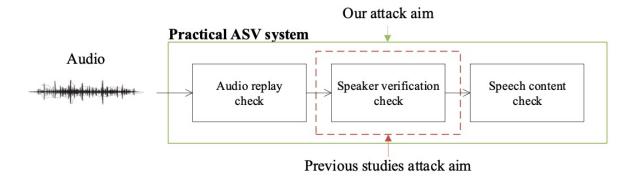
Weiyi Zhang¹, Shuning Zhao¹, Le Liu³, Jianmin Li¹ Xingliang Cheng², Thomas Fang Zheng², Xiaolin Hu^{*1}

¹Department of Computer Science and Technology, Tsinghua University ²Center for Speech and Language Technologies, BNRist, Tsinghua University ³Beijing d-Ear Technologies Co., Ltd.

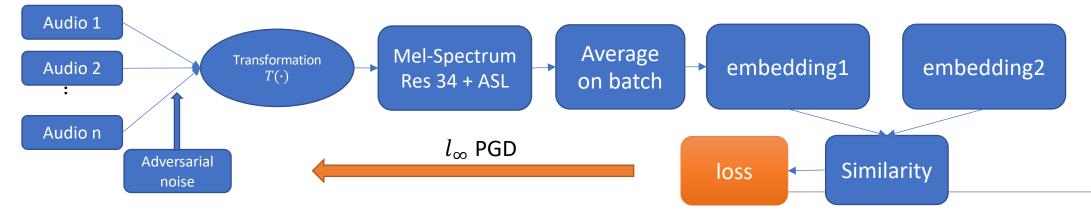
Contact: wy-zhang19@mails.Tsinghua.edu.cn



- Many authentication scenarios such as device access control, banking activities and forensics use automatic speaker verification (ASV) system for verification.
- Using **dynamic text** and **speaker verification** to ensure security.
- Performing attack on the **practical ASV system**.


From: http://www.d-ear.com/article.jsp?s=1

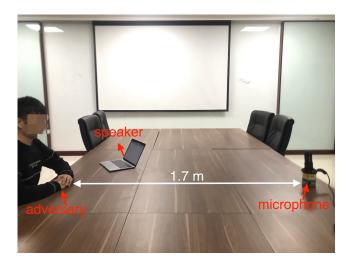
- Threat model : speech recognition module and replay detection module are black box, speaker verification module is white box.
- Goal of attack :
 - *a.* $R(x + \delta') = R(x)$, where $\delta' = Crop([\delta, \delta, ..., \delta], l)$
 - b. $s(V(x + \delta'), V(y)) > \theta$
 - c. $D(x + \delta') = D(x) = True$
 - *d.* δ is independent of the text of *x*
 - *e.* δ is robust to any transformation $T(\cdot)$



- Training set $X = \{x_1, x_2, ..., x_N\}$ where each x_i contains different text contents. X covers great diversity about the adversary such as start offset, tune, emotion and etc.
- Loss function

$$L_1(X,\delta) = \sum_{n=1}^{N} \max(\theta - s(V(T(x_n) + T(\delta')), V(y)), -\kappa)$$
$$L_2(X,\delta) = \max(|STFT(\delta)|)$$
$$L(X,\delta) = L_1(X,\delta) + \gamma L_2(X,\delta)$$

• Two-step algorithm



Experiments Introduction Attack Method Conclusion

- **Evaluation of Digital Attacks**
- **Evaluation of Physical Attacks**
- We play the adversarial perturbation as a separate source when the adversary is speaking.
- Our adversarial examples have a high success rate to pass the replay detection.

Attack type	Steps	ASR(%)	WER(%)	SNR(dB)
Clean data	N/A	0	12.95	N/A
intra-gender/baseline	236	98.43	32.33	16.90
intra-gender/ours	846	98.65	19.43	23.66
inter-gender/baseline	617	96.63	37.57	16.55
inter-gender/ours	1872	96.40	21.53	22.26

Attack ty	vpe ASR	(%)	WER(%)	CER(%)
Clean	C)	11.42	5.78
Gaussia	in C)	17.77	10.06
Baselin	e 80.	00	21.82	14.48
Ours	100	.00	14.97	7.53
Method	Number	Rate	e(%)	
Previous	45	37	.7	
Ours	120	67	.7	4
				4

- We proposed a two-step algorithm to generate universal adversarial perturbations for attacking the practical speaker verification system.
- We study the vulnerability of PSV system in physical world and help researchers to improve the security of such applications.

Thanks

Presenter: Weiyi Zhang

Contact: wy-zhang19@mails.Tsinghua.edu.cn