# TCLA Array: A New Sparse Array Design with Less Mutual Coupling

#### Ahmed M. A. Shaalan, Jun Du and Yan-Hui Tu

School of Information Science and Technology, University of Science and Technology of China, Hefei, Anhui, China ShaalanAhmed@outlook.com, jundu@ustc.edu.cn, tuyanhui@ustc.edu.cn

ICASSP 2021

# **USTC**

- 1 Introduction (DOA, Sensor Arrays, ...)
- 2 Mutual Coupling in Sensor Arrays
- 3 TCLA Arrays
- 4 Numerical Examples
- 5 Concluding Remarks

#### 1 Introduction (DOA, Sensor Arrays, ...)

1 Mutual Coupling in Sensor Arrays

- 1 Numerical Examples
- 2 Concluding Remarks

### DOA estimation and sensor arrays<sup>1</sup>



Uniform Linear Array (ULA) was the common sensor array

Shaalan, Du and Tu (USTC)

<sup>&</sup>lt;sup>1</sup>Van Trees, Optimum Array Processing: Part IV of Detection, Estimation, and Modulation Theory, 2002.

# ULA and sparse arrays

ULA (not sparse)

■ detect at most N − 1 uncorrelated sources, given N sensors<sup>1</sup>

Can only find fewer sources than sensors.

### Traditional Sparse arrays

- 1 Minimum redundancy arrays (MRA)<sup>2</sup>
- 2 Minimum hole arrays (MHAs)<sup>3</sup>
- Identify  $O(N^2)$  uncorrelated sources with O(N) physical sensors.
- More sources than sensors
- No closed forms for sensor locations

<sup>1</sup>Van Trees, Optimum Array Processing: Part IV of Detection, Estimation, and Modulation Theory, .2002
 <sup>2</sup>Moffet, IEEE Trans. Antennas Propag.,1968.
 <sup>3</sup>H. Taylor, S. W. Golomb, "Rulers, Part I", Tech. Rep. 85-05-01, Univ. Southern Calif., Los Angeles (1985)

Shaalan, Du and Tu (USTC

# Array design criteria and new sparse arrays

#### Array design criteria

- 1 The array should have a closed form expression for its sensor locations.
- The array should have a large central ULA segment in its co array.

3 ...

<sup>1</sup>Vaidyanathan and Pal, *IEEE Trans. Sig. Proc., 2011.* <sup>2</sup>Pal and Vaidyanathan, *IEEE Trans. Sig. Proc., 2010.* 

Qin Y. D. Zhang, and M. G. Amin, *IEEE Trans. Sig. Proc., 2015.* Yang, S
 4A. Raza, W. Liu and Q. Shen, *IEEE Trans. Sig. Proc., 2019.* Shined M. A. Shaalan and X. Yu, *IEEE Access, 2019.* Cheng, Zhang, Wang, Shen and Champagne, *IEEE Trans. Signal Proc., 2020.*

New sparse arrays

Co-prime arrays (CPAs)<sup>1</sup>
 Nested arrays (NAs)<sup>2</sup>

Novel arrays

Criterion 1 
Criterion 2

- 3 Generalized co-prime arrays (CACIS & CADiS)<sup>3</sup>
- 4 Thinned co-prime arrays (TCAs)<sup>4</sup>
- 5 Optimized co-prime arrays (OpCA)<sup>5</sup>
- 6 Padded co-prime arrays (PCAs)<sup>6</sup>
- 7 Improved nested arrays (INAs)<sup>7</sup>
- 8 Generalized nested arrays (GNAs)<sup>8</sup>

<sup>7</sup>Yang, Sun, Yuan, and Chen, *Electron. Lett.*, 2016. <sup>8</sup>Shi, Hu, Zhang and Zhou, *IEEE Com. Lett.*, 2018.

Shaalan, Du and Tu (USTC)



# 2 Mutual Coupling in Sensor Arrays

#### 3 TCLA Arrays

4 Numerical Examples

Concluding Remarks

# DOA estimation in the presence of mutual coupling<sup>1</sup>



So, mutual coupling is characterized by the space  $\tilde{\rho}$  between two sensors and this space weight function  $w(\tilde{\rho})$ .

Shaalan, Du and Tu (USTC)

<sup>&</sup>lt;sup>1</sup>Van Trees, Optimum Array Processing: Part IV of Detection, Estimation, and Modulation Theory, .2002

#### Array design criteria and recently proposed sparse arrays

#### Array design criteria

- 1 The array should have a closed form expression for its sensor locations.
- 2 The array should have a large central ULA segment in its co array.
- 3 The array should have small weight functions for small inter-sensor spacings/separations.

# Recently proposed sparse arrays

- Minimum inter-sensor spacing constraint (MISC) arrays<sup>1</sup>
- 2 Augmented nested arrays (ANAs)<sup>2</sup>
- 3 Super nested arrays (SNA)<sup>3</sup>
- Criterion 1 V Criterion 2 V
- Criterion 3

ANA X X X SNA X X X

Z. Zheng, W. Wang, Y. Kong and Y. D. Zhang, *IEEE Trans. Signal Proc., 2019.* Liu, Y. Zhang, Y. Lu, S. Ren, and S. Cao, *IEEE Trans. Signal Proc., 2017.* L. Liu and P. P. Vaidyanathan, *IEEE Trans. Signal Proc., 2016.*

Shaalan, Du and Tu (USTC)

Introduction (DOA, Sensor Arrays, ...)



#### 3 TCLA Arrays

4 Numerical Examples

5 Concluding Remarks

# Goal: Desired properties of TCLA arrays

- □ Having closed-form sensor locations for any given sensor number *N*.
- □ Having a considerably large number of uniform Degrees Of Freedoms (DOFs), which should be, at least, no less than the uniform DOFs of nested and super arrays.
- □ Being sparser than the super nested array,  $\omega_{TCLA}(1) \leq \omega_{Supernested}(1),$   $\omega_{TCLA}(2) \leq \omega_{Supernested}(2),$  $\omega_{TCLA}(2) \leq \omega_{Supernested}(2),$

$$\omega_{\text{TCLA}}(3) \leq \omega_{\text{Supernested}}(3).$$

# TCLA array geometry: Formal definition<sup>1</sup>

|      | Nested a             | TCLA          |                   |
|------|----------------------|---------------|-------------------|
| Ν    | N <sub>1</sub>       | $N_2$         | N <sup>o</sup>    |
| Even | N/2 (odd)            | N/2           | $(N_1 + 1)/2$     |
| Even | N/2 (even)           | N/2           | N <sub>1</sub> /2 |
| Odd  | $(N_1 - 1)/2$ (odd)  | $(N_1 + 1)/2$ | $(N_1 + 1)/2$     |
| Odd  | $(N_1 - 1)/2$ (even) | $(N_1 + 1)/2$ | $(N_1 + 1)/2$     |

Assume that  $N^o$  is obtained from the nested array optimal parameter  $N_1$  as in Table 1, and  $N^t$  and  $N^e$  are afterwards determined as  $N^t - 1$ , and  $N - 2N^o + 1$  in sequential, TCAL arrays are, then, specified by the integer set  $\mathbb{P}$ , defined by

 $\mathbb{P} = \{\mathbb{P}_1 \cup \mathbb{P}_2 \cup \mathbb{P}_3\}, \text{ where }$ 

<sup>1</sup>Ahmed M. A. Shaalan, J. Du and Y. Tu, *IEEE ICASSP*, 2021.

# TCLA array geometry: Depiction

$$\mathbb{P}_{1} = \{-(1+2\ell_{o})|0 \leq \ell_{o} \leq N^{o} - 1\}$$

$$\mathbb{P}_{2} = \{(\ell_{e}\ell_{NT})|0 \leq \ell_{e} \leq N^{e} - 1\}$$

$$\mathbb{P}_{3} = \{\ell_{NT}(N^{e} - 1) + 2\ell_{t}|1 \leq \ell_{t} \leq N^{t} - 1\},$$
where  $\ell_{NT} = 2N^{o}.$ 

$$\mathbb{P}_{1}^{(N^{o}) \text{ sensors}} \qquad \mathbb{P}_{2}^{(N^{e}) \text{ sensors}} \qquad \mathbb{P}_{3}^{(N^{f}) \text{ sensors}}$$

$$\mathbb{P}_{1}^{(N^{o}) \text{ sensors}} \qquad \mathbb{P}_{2}^{(N^{e}) \text{ sensors}} \qquad \mathbb{P}_{3}^{(N^{f}) \text{ sensors}}$$

$$\mathbb{P}_{1}^{(N^{o}) \text{ sensors}} \qquad \mathbb{P}_{2}^{(N^{e}) \text{ sensors}} \qquad \mathbb{P}_{3}^{(N^{f}) \text{ sensors}} \qquad \mathbb{P}_{3}^{(N^{f}) \text{ sensors}}$$

$$\mathbb{P}_{1}^{(N^{o}) \text{ sensors}} \qquad \mathbb{P}_{2}^{(N^{e}) \text{ sensors}} \qquad \mathbb{P}_{3}^{(N^{f}) \text{ senso$$

١

#### TCLA array geometry

Shaalan, Du and Tu (USTC)

#### TCLA array geometry: A concrete example





Difference co-array 
$$\mathbb{D} = \left\{ \rho_i - \rho_j \middle| \rho_i, \rho_i \in \mathbb{P} \right\}$$



|--|

#### Main properties of TCLA arrays: 1- Difference co-array<sup>1</sup>

Difference co-array of the TCLA array with  $N^o$ ,  $N^e$  and  $N^t$  has a central ULA part within the range  $[-(2N^oN^e - 1), 2N^oN^e - 1]^1$ .

Difference co-array of the (super) Nested array with  $N_1$  and  $N_2$  has a ULA part bounded by  $\pm N_2(N_1 + 1) - 1$ .

|    | NA/SNA |       |       | TCLA array     |       |                |       |
|----|--------|-------|-------|----------------|-------|----------------|-------|
| Ν  | $N_1$  | $N_2$ | uDOFs | N <sup>o</sup> | $N^t$ | N <sup>e</sup> | uDOFs |
| 10 | 5      | 5     | 29    | 3              | 2     | 5              | 29    |
| 12 | 6      | 6     | 41    | 3              | 2     | 7              | 41    |
| 13 | 6      | 7     | 48    | 4              | 3     | 6              | 47    |
| 15 | 7      | 8     | 63    | 4              | 3     | 8              | 63    |

<sup>1</sup>Ahmed M. A. Shaalan, J. Du and Y. Tu, *IEEE ICASSP*, 2021.

Shaalan, Du and Tu (USTC)

# Main properties of TCLA arrays: 2- Weight functions<sup>1</sup>

The proposed geometry for TCLA arrays allows us to prove closed-form expressions for  $\omega(1)$ ,  $\omega(2)$ , and  $\omega(3)$ .

|      | NA                        | SNA                                                                                                      | TCLA array      |
|------|---------------------------|----------------------------------------------------------------------------------------------------------|-----------------|
| ω(1) | N <sub>1</sub>            | $\begin{cases} 2, if N_1 \text{ is even,} \\ 1, if N_1 \text{ is odd.} \end{cases}$                      | 1 🗸             |
| ω(2) | $N_1 - 1$                 | $ \begin{cases} N_1 - 3, if N_1 \text{ is even,} \\ N_1 - 1, if N_1 \text{ is odd.} \end{cases} $        | $N^o + N^t - 1$ |
| ω(3) | <i>N</i> <sub>1</sub> – 2 | $\begin{cases} 3, if N_1 = 4, 6, \\ 4, if N_1 \text{ is even}, \\ 1, if N_1 \text{ is odd}. \end{cases}$ | 1 🗸             |

<sup>1</sup>Ahmed M. A. Shaalan, J. Du and Y. Tu, *IEEE ICASSP*, 2021.

# Main properties of TCLA arrays: 2- The weight function distribution

The proposed geometry for TCLA arrays has smaller weight functions for separations larger than 3.



Introduction (DOA, Sensor Arrays, ... )

2 Mutual Coupling in Sensor Arrays

#### 3 TCLA Arrays

#### 4 Numerical Examples

#### 5 Concluding Remarks

## Simulation procedure<sup>1</sup>



<sup>1</sup>Ahmed M. A. Shaalan, J. Du and Y. Tu, *IEEE ICASSP*, 2021.

# MUSIC spectra and RMSE under mutual coupling

#### Nested Array (RMSE=0.0368)



#### SNA (RMSE=0.0075)



#### TCLA array (RMSE=0.0013)



# The TCLA array is much better in the estimation accuracy.

1 Introduction (DOA, Sensor Arrays, ...)

2 Mutual Coupling in Sensor Arrays

3 TCLA Arrays

4 Numerical Examples

#### 5 Concluding Remarks

# Concluding remarks

TCLA arrays

.

- They have the same number of sensors, and the same uniform detection capacity as super nested arrays.
- They have reduced mutual coupling than super nested arrays.
- In the future, the high order extensions of the proposed TCLA array are introduced.
- For more information on TCLA arrays, Please refer to <sup>1</sup>.

# Thank you!

<sup>&</sup>lt;sup>1</sup>Ahmed M. A. Shaalan, J. Du and Y. Tu, *IEEE Trans. Sig. Proc., under review.*