COMMUNICATION OVER BLOCK FADING CHANNELS - AN

ALGORITHMIC PERSPECTIVE ON OPTIMAL TRANSMISSION SCHEMES

Turing Machine Computability Framework Imperfect CSI

Tape

Mathematical model of an abstract machine that manipulates symbols on a strip
of tape according to certain given rules

@ Turing machines can simulate any given algorithm and therewith provide a
simple but very powerful model of computation

@ No limitations on computational complexity, unlimited computing capacity
and storage, and execute programs completely error-free

= Fundamental performance limits for today’s digital computers

@ A. M. Turing, "On computable numbers, with an application to the Entscheidungsproblem,” Proc. London Math. Soc., vol. 2, no. 42,
pp. 230-265, 1936

@ A. M. Turing, "On computable numbers, with an application to the Entscheidungsproblem. A correction,” Proc. London Math. Soc.,
vol. 2, no. 43, pp. 544-546, 1937

Block Fading Channel

@ Provision of accurate CSl is a major challenge in wireless systems due to

o dynamic nature of the wireless channel
e estimation Inaccuracy
o limited feedback

= Imperfect CSI must be taken into account in the system design

@ We consider the general uncertainty model of block fading channels

— (Capacity is known, but optimal signal processing and coding schemes remain
unknown in general
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@ Let S be an arbitrary state (uncertainty) set

@ State s € S is unknown, but remains constant and follows the fading
statistic ps € P(8)

Definition: The averaged channel (AC)
W = {{Ws S GJ—C(DC; 13)}5687 ps € ?(8)}

is given by the collection of all channels W, € CH(X;Y) for all states s € &
and additional probability distribution ps € P(S) on the state set S.

SPCOM-2: Information Theory, Coding and Security

@ A sequence of rational numbers {r,} e is called computable if there exist
recursive functions a, b, s : N — N with b(n) # 0 for all n € N and

n & N

@ A real number x is said to be computable it there exists a computable
sequence of rational numbers {r,} ey such that

Ix —r,| < 27" for all n € N

@ R, is the set of computable real numbers

@ P.(X) is the set of computable probability distributions
(i.e., all P € P(X) such that P(x) € R., x € X)

@ CH.(X;Y) is the set of all computable channels
(i.e., for W : X — P(Y) we have W(:|x) € P.(Y) for every x € X)

Definition: An ACW = {{W, € CH.(X;Y)}scs, ps € P(S)} is said to be
computable if there is a recursive function @ : 8 — CH(X;Y) with @(s) = W,
for all s € & and ps is a computable probability distribution. The set of all

computable ACs is denoted by AC.(X,S;Y).

— The set W is algorithmically constructible, i.e., for every state s € S the
channel Wi can be constructed by an algorithm with input s

@ R. |. Soare, Recursively Enumerable Sets and Degrees. Berlin, Heidelberg: Springer-Verlag, 1987
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Theorem: The capacity C(W) of an averaged channel W is

C(W) = sup infl/(p, W)
pcP(X) SES

@ Analytically well understood (closed-form single letter entropic expression)
@ Surprisingly, not much known about its algorithmic computability and the
optimal signal processing
— Study its structure and algorithmic computability of optimal strategies

@ R. Ahlswede, “The weak capacity of averaged channels,” Z. Wahrscheinlichkeitstheorie verw. Gebiete, vol. 11, pp. 61-73, Mar. 1968

@ Let's see if for a computable AC W € AC.(X, 3;Y) the capacity C(W) is

computable...

Theorem: Let X and Y be arbitrary finite alphabets. Then there is a com-
putable averaged channel W € AC.(X, 8:Y) such that

C(W)= sup infl(p, W) & R..
pEP(X) SES

— Although the channel itself is computable, i.e., W € AC.(X, S;Y), it is not
possible to algorithmically compute C(W)!

Theorem: The capacity C(W) of a discrete memoryless channel (DMC) W is

C(W) =max/(X;Y) = I(p, W
(W) = max/(X;Y) max (p, W)

@ Entropic quantities
@ Single-letter
@ Convex optimization problem

@ Of particular relevance as it allows to compute the capacity C(W) as a
function of the channel W given by a convex optimization problem

@ Warm-up: Let's see if for a computable channel W € CH . (X;Y) the
capacity C(W) is computable...

Theorem: Let X and Y be arbitrary finite alphabets. Then for all computable
channels W € CH . we have

C(W)= max I(p, W) € R..
peP(X)

— The capacity C( W) for a computable channel W € CH, is computable
and can be algorithmically computed by a Turing machine!

@ K. Weihrauch, Computable Analysis - An Introduction. Berlin, Heidelberg: Springer-Verlag, 2000

@ Computability framework based on Turing machines

@ Computability of capacities

— Capacity value of DMCs is computable: C(W) € R,

— Capacity value of ACs is in general not computable: C(W) ¢ R.

= Similarly, capacity value of compound channels is in general not
computable! Details can be found in the journal version:

H. Boche, R. F. Schaefer, and H. V. Poor, “Communication under channel uncertainty: An algorithmic perspective and effective

@ construction,” /IEEE Trans. Signal Process., vol. 68, pp. 6224-6239, 2020

@ Search for capacity-achieving transmission schemes
o Goal: Turing machine T(n) = (E}, &%) that outputs an optimal encoder

E* and optimal decoder ¢ providing the maximal possible rate while
guaranteeing error probability €

= Not possible in general for ACsl
(Note that it is not required that the Turing machine depends recursively
on the channel; it is only asked if it is possible to find such a search
algorithm for a fixed and given channel and error)

= Further studies on the algorithmic constructability of codes:

H. Boche, R. F. Schaefer, and H. V. Poor, “Turing meets Shannon: Algorithmic constructability of capacity-achieving codes,” in
@ Proc. IEEE Int. Conf. Commun., Montreal, QC, Canada, Jun. 2021
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