COMMUNICATION OVER BLOCK FADING CHANNELS – AN ALGORITHMIC PERSPECTIVE ON OPTIMAL TRANSMISSION SCHEMES

Turing Machine

Mathematical model of an abstract machine that manipulates symbols on a strip of tape according to certain given rules

- Turing machines can simulate any given algorithm and therewith provide a simple but very powerful model of computation
- No limitations on computational complexity, unlimited computing capacity and storage, and execute programs completely error-free

⇒ Fundamental performance limits for today's digital computers

- A. M. Turing, "On computable numbers, with an application to the Entscheidungsproblem," Proc. London Math. Soc., vol. 2, no. 42, pp. 230–265, 1936
- A. M. Turing, "On computable numbers, with an application to the Entscheidungsproblem. A correction," Proc. London Math. Soc., vol. 2, no. 43, pp. 544–546, 1937

Block Fading Channel

- Provision of accurate CSI is a major challenge in wireless systems due to • dynamic nature of the wireless channel
- estimation inaccuracy
- limited feedback
- ٥...
- \Rightarrow Imperfect CSI must be taken into account in the system design
- We consider the general uncertainty model of *block fading channels*
- \Rightarrow Capacity is known, but optimal signal processing and coding schemes remain unknown in general

- Let S be an arbitrary state (uncertainty) set
- State $s \in S$ is unknown, but remains *constant* and follows the fading statistic $p_{S} \in \mathcal{P}(S)$

Definition: The averaged channel (AC)

 $\mathcal{W} := \{\{W_s \in \mathcal{CH}(\mathcal{X}; \mathcal{Y})\}_{s \in \mathcal{S}}, p_S \in \mathcal{P}(\mathcal{S})\}\}$

is given by the collection of all channels $W_s \in \mathcal{CH}(\mathfrak{X}; \mathcal{Y})$ for all states $s \in S$ and additional probability distribution $p_S \in \mathcal{P}(S)$ on the state set S.

SPCOM-2: Information Theory, Coding and Security

• A sequence of rational numbers $\{r_n\}_{n \in \mathbb{N}}$ is called *computable* if there exist recursive functions $a, b, s : \mathbb{N} \to \mathbb{N}$ with $b(n) \neq 0$ for all $n \in \mathbb{N}$ and

$$r_n = (-1)^{s(n)} \frac{a(n)}{b(n)},$$

- A *real number x is said to be computable* if there exists a computable sequence of rational numbers $\{r_n\}_{n \in \mathbb{N}}$ such that $|x - r_n| < 2^{-n}$ for all $n \in \mathbb{N}$
- \mathbb{R}_{c} is the set of computable real numbers
- $\mathcal{P}_{c}(\mathcal{X})$ is the set of computable probability distributions (i.e., all $P \in \mathcal{P}(\mathcal{X})$ such that $P(x) \in \mathbb{R}_c$, $x \in \mathcal{X}$) • $\mathcal{CH}_{c}(\mathfrak{X}; \mathfrak{Y})$ is the set of all computable channels (i.e., for $W: \mathfrak{X} \to \mathcal{P}(\mathcal{Y})$ we have $W(\cdot|x) \in \mathcal{P}_{c}(\mathcal{Y})$ for every $x \in \mathfrak{X}$)

Definition: An AC $\mathcal{W} = \{\{W_s \in \mathcal{CH}_c(\mathfrak{X}; \mathcal{Y})\}_{s \in S}, p_S \in \mathcal{P}(S)\}\$ is said to be *computable* if there is a recursive function $\varphi : S \to \mathcal{CH}_c(\mathfrak{X}; \mathfrak{Y})$ with $\varphi(s) = W_s$ for all $s \in S$ and p_S is a computable probability distribution. The set of all computable ACs is denoted by $\mathcal{AC}_{c}(\mathfrak{X}, \mathfrak{S}; \mathfrak{Y})$.

 \Rightarrow The set \mathcal{W} is algorithmically constructible, i.e., for every state $s \in S$ the channel W_s can be constructed by an algorithm with input s R. I. Soare, *Recursively Enumerable Sets and Degrees*. Berlin, Heidelberg: Springer-Verlag, 1987

Perfect CSI

Theorem: The *capacity* C(W) of a discrete memoryless channel (DMC) W is $C(W) = \max_{X} I(X; Y) = \max_{p \in \mathcal{P}(\mathcal{X})} I(p, W)$

- Entropic quantities
- Single-letter
- Convex optimization problem
- Of particular relevance as it allows to **compute** the capacity C(W) as a function of the channel W given by a convex optimization problem
- Warm-up: Let's see if for a computable channel $W \in \mathcal{CH}_c(\mathfrak{X}; \mathfrak{Y})$ the capacity C(W) is computable...

Theorem: Let \mathfrak{X} and \mathfrak{Y} be arbitrary finite alphabets. Then for all computable channels $W \in \mathcal{CH}_c$ we have

$$C(W) = \max_{p \in \mathcal{P}(\mathcal{X})} I(p, W)$$

 \Rightarrow The capacity C(W) for a computable channel $W \in \mathcal{CH}_c$ is computable and can be algorithmically computed by a Turing machine!

K. Weihrauch, *Computable Analysis - An Introduction*. Berlin, Heidelberg: Springer-Verlag, 2000

 $n \in \mathbb{N}$

- $\in \mathbb{R}_{c}$.

Theorem: The capacity C(W) of an averaged channel W is $C(\mathcal{W}) = \sup_{p \in \mathcal{P}(\mathcal{X})} \inf_{s \in \mathcal{S}} I(p, W_s)$

- optimal signal processing
- computable...

Theorem: Let \mathcal{X} and \mathcal{Y} be arbitrary finite alphabets. Then there is a computable averaged channel $\mathcal{W} \in \mathcal{AC}_{c}(\mathcal{X}, \mathcal{S}; \mathcal{Y})$ such that $C(W) = \sup \inf_{s \in S} I(p, W_s) \notin \mathbb{R}_c.$

- possible to algorithmically compute $C(\mathcal{W})!$
- Computability framework based on Turing machines
- Computability of capacities
- \Rightarrow Capacity value of DMCs is computable: $C(W) \in \mathbb{R}_{c}$

- construction," IEEE Trans. Signal Process., vol. 68, pp. 6224–6239, 2020
- Search for capacity-achieving transmission schemes
- guaranteeing error probability ϵ
- \Rightarrow **Not** possible in general for ACs! algorithm for a fixed and given channel and error)

H. Boche, R. F. Schaefer, and H. V. Poor, "Turing meets Shannon: Algorithmic constructability of capacity-achieving codes," in *Proc. IEEE Int. Conf. Commun.*, Montreal, QC, Canada, Jun. 2021

Supported by the German Federal Ministry of Education and Research (BMBF) under Grants 16KIS1003K and 16KIS1004, by the German Research Foundation (DFG) under Grants BO 1734/20-1, EXC-2092 - 390781972, EXC-2111 - 390814868, and SCHA 1944/6-1, as well as by the U. S. National Science Foundation under Grants CCF-0939370 and CCF-1908308.

Holger Boche¹, Rafael F. Schaefer², H. Vincent Poor³ ¹ Technical University of Munich ² University of Siegen ³ Princeton University

Imperfect CSI

• Analytically well understood (closed-form single letter entropic expression) • Surprisingly, not much known about its algorithmic computability and the

 \Rightarrow Study its structure and algorithmic computability of optimal strategies R. Ahlswede, "The weak capacity of averaged channels," Z. Wahrscheinlichkeitstheorie verw. Gebiete, vol. 11, pp. 61–73, Mar. 1968

• Let's see if for a computable AC $\mathcal{W} \in \mathcal{AC}_{c}(\mathcal{X}, \mathcal{S}; \mathcal{Y})$ the capacity $\mathcal{C}(\mathcal{W})$ is

 \Rightarrow Although the channel itself is computable, i.e., $\mathcal{W} \in \mathcal{AC}_c(\mathfrak{X}, \mathfrak{S}; \mathfrak{Y})$, it is not

Discussion

 \Rightarrow Capacity value of ACs is in general **not** computable: $\mathcal{C}(\mathcal{W}) \notin \mathbb{R}_{c}$ \Rightarrow Similarly, capacity value of compound channels is in general **not computable**! Details can be found in the journal version:

H. Boche, R. F. Schaefer, and H. V. Poor, "Communication under channel uncertainty: An algorithmic perspective and effective

• **Goal:** Turing machine $\mathfrak{T}(n) = (E_n^*, \Phi_n^*)$ that outputs an optimal encoder E_n^* and optimal decoder Φ_n^* providing the maximal possible rate while

(Note that it is not required that the Turing machine depends recursively on the channel; it is only asked if it is possible to find such a search \Rightarrow Further studies on the algorithmic constructability of codes:

ICASSP 2021