Imperial College London

Processing pipelines for efficient, physicallyaccurate simulation of microphone array signals in dynamic sound scenes

<u>Alastair H. Moore</u>, Rebecca R. Vos, Patrick A. Naylor and Mike Brookes

ICASSP 2021

Motivation

"Listener-in-the-loop" perceptual experiments

Motivation

Processing pipelines for efficient, physically-accurate simulation of microphone array signals in dynamic sound scenes

Outline

- Task and assumptions
- Pipelines
- Evaluation of accuracy
- Efficiency comparison

Plane wave spatialisation

- Acoustic room simulation calculates propagation from all sources in a scene to a single point
 - E.g. centre of head/array
- Contribution of each incident sound wave to to the microphone signals calculated according to its direction of arrival (DOA)
- Source and/or array movement causes DOA to change over time

S wavefronts, M microphones

S wavefronts, M microphones - dynamic

Fast convolution

S wavefronts, M microphones - dynamic

Direct synthesis (baseline)

Shared kernels

- Always evaluate a fixed set of filter kernels
- For each source
 - Find weights required to approximate the required impulse response using a combination of available kernels
 - Apply weights to the input signals
 - Add scaled signals to bus

Microphone independent encoding

Virtual speaker encoding (1)

- Kernels correspond to fixed directions of arrival
- More directions → Increases spatial resolution
- Nearest speaker encoder (NSPK) assigns each source to one direction $\longrightarrow \mathbf{b}^{(t)}$

Virtual speaker encoding (2)

- Kernels correspond to fixed directions of arrival
- More directions \rightarrow Increases spatial resolution
- Vector base amplitude panning (VBAP) assigns a portion of signal to multiple (*J*) virtual speakers
- Weights depend on direction of arrival

Spherical harmonic encoding

- Kernels correspond to spherical harmonic transform of the array manifold
 - Different coefficients for each microphone
 - Increasing order \rightarrow Increases spatial resolution
- Source weights depend on direction of arrival
 - Obtained directly from spherical harmonic basis functions
 - Independent of microphone
- Fade weights between directions at start and end of frame

Microphone dependent encoding

Principal component analysis

- Kernels correspond to principal components of the array manifold
 - Different basis functions for each microphone
 - Increasing order \rightarrow Increases spatial resolution
- Source weights depend on direction of arrival
 - Obtained from PCA
 - Dependent on microphone
- Fade weights between directions at start and end of frame

Pipelines

- Microphone-independent encoders
 - Nearest speaker
 - VBAP
 - SH
- Microphone-dependent encoders
 - PCA

Can we use fewer kernels by time-aligning impulse responses? Does it reduce the overall computational cost?

Time aligned kernels

- Remove direction-dependent delay from filters
 - Estimated using group delay
- Group delay aligned (GDA) impulse responses are more consistent
 - Better interpolation?
 - Lower order approximation?
- Direction-dependent delay must be added to each incident signal before encoding
- Delay is different for each microphone
- Sinc interpolation using *D* coefficients from precomputed

Time-aligned PCA spatialization is novel approach

Time alignment example

• Front left channel of hearing aid array

Ground truth

VBAP – 4 kernels

Original

Aligned

Original

Aligned

PCA – 4 kernels

gd aligned pca (4 components) 0 0.8 50 0.6 0.4 100 0.2 Azimuth [deg] 500 Amplitude 0 -0.2 250 -0.4 300 -0.6 -0.8 350 50 100 150 200 250 Time [samples]

Original

Aligned

Evaluation - accuracy

- Ground truth defined on 1 degree grid in horizontal plane
- For each method, reconstruct impulse response for each direction of arrival using varying number of kernels
- Compute error with respect to ground truth in each direction

Computational cost

Summary

- Simulation of dynamic sound scenes for listener-in-theloop experiments
- Evaluated several pipelines in terms of the accuracy verses number of kernels
- Time aligned pipelines achieve the most accurate performance when a limited number of kernels are available
- Computational cost analysis suggests that microphone independent encoding approaches offer better scalability

Imperial College London

Processing pipelines for efficient, physicallyaccurate simulation of microphone array signals in dynamic sound scenes

<u>Alastair H. Moore</u>, Rebecca R. Vos, Patrick A. Naylor and Mike Brookes

AUD-34: Acoustic System Identification and Modeling Friday, 11 June from 14:00 to 14:45 in Eastern Daylight Time