Paper Number: 4992

nl

Ke Li', Daniel Povey?, Sanjeev Khudanpur’
"The Johns Hopkins University, USA, #Xiaomi Corp., China.

» Lattice rescoring usually involves lattice expansion Algorithm 1 A Constrained Path Cover Algorithm Comparison with n-gram Expansion
» The general goal of lattice expansion is to make arcs on highly Input: L: a lattice
likely paths have unique histories Output: O: a list of paths, each is represented as a linear FST. I B e Expansion
» n-gram approximation, which merges histories that share 1. procedure CONSTRAINEDPATHCOVER(L) 10.500 ¢ n:4 """""" """"" ¢ - n-gram Expansion
(n — 1) most recent words, may sacrifice accuracy and waste o. ToplogicalSort(L) oasl o
computation on less likely paths. Whether can we do better? 3 Pl > A list of pairs of a path and its cost | :ezéo.s\éﬁ
» A major speedup bottleneck of lattice rescoring with neural LMs 4- o, 3 + ViterbiForwardBackward(L) S 10-40-"""';;6;2 """ W
is LM evaluation 55 fors=0:S—1do > Loop over states 1035 S
» Existing methods such as caching computed LM scores and 6: for e € s.out do > Loop over outgoing arcs of s = [P A Oud I N B o
pruning-based algorithms speedup the process by reducing 7. if best path including e is not generated then 1030k o 30 Ol”f_o """
the number of LM evaluations 8: p, ¢ +— BestPathForAnArc(a,j,s,e) 10,25 e_. ------- B —
> Whilg .the sequential LM evaluation orde_r in a I_atti_ce IS stiI_I 9: P.append((p, c)) 0a0l . e=0008
inefficient. How to parallel LM evaluations within a lattice? ‘o Sort(P) > Sort paths based on their costs L
11: O <« ConstructOutputLattice(P) Lattice depth

A Parallel Lattice Rescoring Strategy (“Non-iterative™)

Figure 1: WERs and lattice depths for different ¢ values and n-gram orders.
» Posterior-based expansion generates more compact lattices with

A Refined Parallel Lattice Rescoring Strategy (“lterative™)

Rescoring Procedure

» Step 1 - Lattice Expansion: expand a lattice with a » Apply score replacement on top of the introduced non-iterative better recognition accuracy than n-gram expansion
posterior-based method (with beam pruning applied beforehand) parallel lattice rescoring strategy Comparison with Pruned Lattice Rescoring
» Step 2 - Lattice-to-List Conversion: convert the expanded lattice » Score replacement means replacing n-gram scores with neural WER |
into a minimal list of hypotheses that cover every arc LM ones for lattices from first-pass decoding Method Hub5'00 Swb Callhm Lattice Depth
» Step 3 - Score computation and estimation: compute LM scores > It is referred to “iterative” since rescoring happens twice 50-best 113 75 150 i
of the lists in parallel and estimate LM scores for egch arc Pruned (4-gram approx.) 11.2 7.3 15.0 15.1
» Step 4 - Integrate scores back to the expanded lattice

Non-iterative (¢ = 0.5) 11.1 7.4 149 6.4

Posterior-based Lattice Expansion Algorithm > Data: SWBD with 260h speech

Table 3: WERs and lattice depths from pruned lattice rescoring and the proposed

» Idea - only expand very possible arcs, e.g. arc posteriors > ¢ > Acoustic models: Factorized TDNN with LFMMI objective (Kaldi) == © L 0 2 rescoring.

» The basic question is whether an incoming arc should be split off ~ » Neural LMs: 2-layer LSTM and a 6-layer Transtormer (PyTorch); » The non-iterative rescoring strategy obtains competitive
from the rest of incoming arcs to its destination-state 2-layer LSTM (Kaldi RNNLM) performance and generates smaller lattices

» The rule is to allocate a new copy of the destination-state if the WERs on SWBD

arc posterior > ¢ (a predefined threshold), otherwise transition to

the original destination-state Effect of Estimation Methods Method UbS 00 Swb Gallhm
| att List G . Model € Average Weighted Average Semi-Viterbi 4-gram KN 128 86 170
attice-to-List onversion AE 107 107 0.6 20-best (LSTM) 109 74 14.6

» Definition of path cover: a set of paths such that every arc in the Transformer

lattice is covered by at least one path 0.05 10.6 10.6 10.5 ilo-b?tSt ('[ransfo_r%e()r())s 182 (732 123
» Lattice-to-List conversion aims to find a minimal path cover with Table 1: WERs on Hub5’00 (full set) of SWBD from the non-iterative lattice On"_ erative (e = 0.) : : :
dition that h path is the best tor at | pt e arc it h rescoring strategy with three estimation methods. lterative (e = 0.001) 10.2 6.5 13.9
cONCIToN hat eath patn s e best ohe 10T at1east ohe art i nas » Similar observation is observed with the LSTM LM Table 4: WERSs from proposed lattice rescoring strategies with a Transformer LM.

Estimation of Neural LM Scores

imat - - Analysis of lterafive Rescorin
» Estimation of neural LM scores for each arc is needed since an y J Conclusions

arc may be shared by multiple paths Rescoring Method Hub5'00 Swb Callhm » Lattice-to-list conversion enables parallel LM evaluations within a
» We experiment with three approximation methods: Score replacement 108 68 146 lattice and fully takes advantage of the parallel computation cross
» Simply average neural LM scores from shared paths Non-terative (e=0.5) 106 68 143 words of Transformer LMs for speedup.
» Perform weighted average with weights as neural LM scores of Score replacement + Non-iterative 103~ 6.6 14.0 » Posterior-based lattice expansion outperforms n-gram expansion.
histories on shared paths Table 2: WERSs from proposed lattice rescoring strategies with a Transformer LM. » The proposed rescoring strategy makes it easier and more
» Choose the neural LM score from the lowest-cost path among » The better performance of non-iterative rescoring compared with flexible to perform lattice rescoring with Py Torch LMs in Kaldi
the shared paths (Referred to “Semi-Viterbi” in experiments) score replacement alone indicates the value of lattice expansion kaldi/egs/swbd/s5c/local/pytorchnn/

ICASSP 2021, June 6-11 — Toronto, Canada E-Mail: k1126Qjhu.edu

https://github.com/kaldi-asr/kaldi/blob/master/egs/swbd/s5c/local/pytorchnn/run_nnlm.sh
https://github.com/kaldi-asr/kaldi/blob/master/egs/wsj/s5/local/pytorchnn/run_nnlm.sh

