
A Parallelizable Lattice Rescoring Strategy
with Neural Language Models

Ke Li1, Daniel Povey2, Sanjeev Khudanpur1

Paper Number: 4992

1The Johns Hopkins University, USA, 2Xiaomi Corp., China.

Motivation

I Lattice rescoring usually involves lattice expansion
I The general goal of lattice expansion is to make arcs on highly

likely paths have unique histories
I n-gram approximation, which merges histories that share

(n − 1) most recent words, may sacrifice accuracy and waste
computation on less likely paths. Whether can we do better?

I A major speedup bottleneck of lattice rescoring with neural LMs
is LM evaluation
I Existing methods such as caching computed LM scores and

pruning-based algorithms speedup the process by reducing
the number of LM evaluations

I While the sequential LM evaluation order in a lattice is still
inefficient. How to parallel LM evaluations within a lattice?

A Parallel Lattice Rescoring Strategy (“Non-iterative”)

Rescoring Procedure
I Step 1 - Lattice Expansion: expand a lattice with a

posterior-based method (with beam pruning applied beforehand)
I Step 2 - Lattice-to-List Conversion: convert the expanded lattice

into a minimal list of hypotheses that cover every arc
I Step 3 - Score computation and estimation: compute LM scores

of the lists in parallel and estimate LM scores for each arc
I Step 4 - Integrate scores back to the expanded lattice
Posterior-based Lattice Expansion Algorithm
I Idea - only expand very possible arcs, e.g. arc posteriors > ε

I The basic question is whether an incoming arc should be split off
from the rest of incoming arcs to its destination-state

I The rule is to allocate a new copy of the destination-state if the
arc posterior > ε (a predefined threshold), otherwise transition to
the original destination-state

Lattice-to-List Conversion
I Definition of path cover : a set of paths such that every arc in the

lattice is covered by at least one path
I Lattice-to-List conversion aims to find a minimal path cover with

condition that each path is the best one for at least one arc it has
Estimation of Neural LM Scores
I Estimation of neural LM scores for each arc is needed since an

arc may be shared by multiple paths
I We experiment with three approximation methods:
I Simply average neural LM scores from shared paths
I Perform weighted average with weights as neural LM scores of

histories on shared paths
I Choose the neural LM score from the lowest-cost path among

the shared paths (Referred to “Semi-Viterbi” in experiments)

Lattice-to-List Conversion
Algorithm 1 A Constrained Path Cover Algorithm

Input: L: a lattice
Output: O: a list of paths, each is represented as a linear FST.

1: procedure CONSTRAINEDPATHCOVER(L)
2: ToplogicalSort(L)
3: P ← [] . A list of pairs of a path and its cost
4: α, β ← ViterbiForwardBackward(L)
5: for s = 0 : S − 1 do . Loop over states
6: for e ∈ s.out do . Loop over outgoing arcs of s
7: if best path including e is not generated then
8: p, c ← BestPathForAnArc(α,β,s,e)
9: P.append((p, c))

10: Sort(P) . Sort paths based on their costs
11: O ← ConstructOutputLattice(P)

A Refined Parallel Lattice Rescoring Strategy (“Iterative”)

I Apply score replacement on top of the introduced non-iterative
parallel lattice rescoring strategy
I Score replacement means replacing n-gram scores with neural

LM ones for lattices from first-pass decoding
I It is referred to “iterative” since rescoring happens twice

Experimental Setup

I Data: SWBD with 260h speech
I Acoustic models: Factorized TDNN with LFMMI objective (Kaldi)
I Neural LMs: 2-layer LSTM and a 6-layer Transformer (PyTorch);

2-layer LSTM (Kaldi RNNLM)

Experimental Results

Effect of Estimation Methods
Model ε Average Weighted Average Semi-Viterbi

Transformer 0.5 10.7 10.7 10.6
0.05 10.6 10.6 10.5

Table 1: WERs on Hub5’00 (full set) of SWBD from the non-iterative lattice
rescoring strategy with three estimation methods.
I Similar observation is observed with the LSTM LM
Analysis of Iterative Rescoring

Rescoring Method Hub5’00 Swb Callhm
Score replacement 10.8 6.8 14.6
Non-iterative (ε = 0.5) 10.6 6.8 14.3
Score replacement + Non-iterative 10.3 6.6 14.0

Table 2: WERs from proposed lattice rescoring strategies with a Transformer LM.

I The better performance of non-iterative rescoring compared with
score replacement alone indicates the value of lattice expansion

Experimental Results (cont.)

Comparison with n-gram Expansion

5 10 15 20 25 30 35 40 45
Lattice depth

10.20

10.25

10.30

10.35

10.40

10.45

10.50

10.55

W
E
R

 (
%

)

ε=0.5

ε=0.2

ε=0.05

ε=0.01

ε=0.0018

n=4

n=5

n=6

n=7
n=8

Posterior Expansion

n-gram Expansion

Figure 1: WERs and lattice depths for different ε values and n-gram orders.

I Posterior-based expansion generates more compact lattices with
better recognition accuracy than n-gram expansion

Comparison with Pruned Lattice Rescoring

Method WER Lattice Depth
Hub5’00 Swb Callhm

20-best 11.3 7.5 15.0 -
Pruned (4-gram approx.) 11.2 7.3 15.0 15.1
Non-iterative (ε = 0.5) 11.1 7.4 14.9 6.4

Table 3: WERs and lattice depths from pruned lattice rescoring and the proposed
non-iterative lattice rescoring.

I The non-iterative rescoring strategy obtains competitive
performance and generates smaller lattices

WERs on SWBD
Method Hub5’00 Swb Callhm
4-gram KN 12.8 8.6 17.0
20-best (LSTM) 10.9 7.1 14.6
20-best (Transformer) 10.8 7.2 14.4
Non-iterative (ε = 0.005) 10.4 6.8 14.0
Iterative (ε = 0.001) 10.2 6.5 13.9

Table 4: WERs from proposed lattice rescoring strategies with a Transformer LM.

Conclusions
I Lattice-to-list conversion enables parallel LM evaluations within a

lattice and fully takes advantage of the parallel computation cross
words of Transformer LMs for speedup.

I Posterior-based lattice expansion outperforms n-gram expansion.
I The proposed rescoring strategy makes it easier and more

flexible to perform lattice rescoring with PyTorch LMs in Kaldi
kaldi/egs/swbd/s5c/local/pytorchnn/
kaldi/egs/wsj/s5/local/pytorchnn/

ICASSP 2021, June 6-11 — Toronto, Canada E-Mail: kli26@jhu.edu

https://github.com/kaldi-asr/kaldi/blob/master/egs/swbd/s5c/local/pytorchnn/run_nnlm.sh
https://github.com/kaldi-asr/kaldi/blob/master/egs/wsj/s5/local/pytorchnn/run_nnlm.sh

