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Difficulties and key problems in few-shot learning image classification | Pinel;
. . General Pipeline Comparison to the state of the art:
» Limited labelled data for training P P
' ' ini General pipeline for most of existing methods with good performance Baselines Embedding Net _1-Shot 5-Way _ 5-shot5-Way 10 prove the effectiveness of the proposed
> Novel classes during test comparing to training PIP 5 5 P MatchingNet [11] 4 Conv 356 £084% 5531£0.73%  method, we train the embedding network
' ' I NI . < . MAML [12 4C 48710 +1.84% 63.11 = 0.92% : .
» Highly relied on the quality of pretraining on the backbone > Pre-train the backbone on training set. N joom - BIOLLME G11E09% - with labelled data (Minig0-SL and CUB150-SL
_ . . . . . . . . REPTILE [14] 4 Conv 4997 +032%  65.99 + 0.58% as detailed in Section 4.2). As shown in Table
A robust few-shot learning method will benefit > Meta-learning based training with pretrained backbone on PN tCow  #QL07% RWML0S6% 1 and Table 2, it performs even worse than
. .« . . _ ine¥ b 50% + 0. . :
» Tasks that have very limited data for training such as Medical Images training set erilie | T T e 0 thebmj’;hods \A:th sll(mple 4 (quotr:.v blotcks k
: : : . : DN4 [31] 4 Conv 5124 +0.74%  71.02% =+ 0.64 embeading networks as such big networ
» Who cannot afford for very expensive annotation » Test the performance of the solution by training with SNALL (32 ReNelll — SSTTZ09% &SE09% under supervised learning with limited data
limited data(1-shot or 5-shot) with novel classes(5-way) in e 1 ResNlet12 3650+ 040% - 712£020%  can cause overfitting problem and cannot
: : ' e ; S50 adjust to new unseen classes during testing.
test set and testing on query sam les in these novel classes. gggp[jvll][z] ﬁiﬁﬁﬁﬂ% 54'3578§00<%36% 74'4;500%29% Hojwever, with SSL based pre-trainiﬁg a mogre
. . Qiao-WRN [3] Wide-ResNet28  59.60 £0.41%  73.74 £ 0.19% . .
Self-supervised learning stage LB 14 WicRooas @760 Teons  Eeneraized embedding networkcanbe
: . : : Dis. k-shot [7] ResNet34 56.30 + 0.40%  73.90 + 0.30% | | v uits significantly.
The core is to maximize mutual information N, are the negative samples of image x, ¢ is Self-Jig(SVM) [8] ResNet50 58.80 £ 1.36%  76.71 + 0.72% One may also concern about the
=== _ Query Image between gl.obal features and local feétures the distance metric function. At last, the I(:)Eé:ﬁ?iiSOSL f;ﬂ?;t;()t 3 9;333"19(7 = 1310?16‘7 effectiveness of the meta-learning fine-tuning
NN . T —-- from two views (x, , X, ) of the same image. overall loss between x, and x, is as follows: s _ —_ ' Py ' oo in the second stage. To test this, the pre-train
| I o The NCE | ic defined as: a b Ours_Mini80_SSL AmdimNet 4613 £0.17% 70.14 £ 0.15%
e T ) T |2 € 055 15 defined as. Ours_Mini80_SSL AmdimNet  64.03 +020% 81.15+0.14%  embedding network is directly applied to the
N O i - Losi(Ta, Tb) = Losi (fo(za), F5(x0)) + Ours Image9005SL, | AmdimNet 7682 +0.19% 3098+0.10%  task with the nearest neighbourhood(NN)
IR e .
. . e Losi (£5(xa), f5(x)) = Lot (£5(xa), F1(x0)) + Lsst (f5(za), F5(xb)) classification. As shown in the test results on
§ /:_ _____ 1" ,Escm"‘zi:\\ ; | \ ’ exp{d(fs(za), fs(xs))} ’ Table 1. Few-shot classification accuracy results on MinilmageNet.  both dataset, meta-learning can effectively
3 Shared Looal Feature T ~:‘;:7,«;\ Ermbedding \ —17 | — log s exi) {q(;(]" CANAER) : ot o : h | '’ indicates result without meta-learning. fine-tune the embedding network and
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§| ST Global | Global | Global | Global MEta-Iea rnlng Stage ProtoNet [15] 4 Conv 51.31£091%  70.77 £ 0.69%
%E & Feature Feature Feature | Feature MACO [24] 4 Conv 60.76% 74.96% Methods ChestX ISIC
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<-—» Mutual InfoMax By ° — The representation of class k is represented The loss in the meta-learning stage is set as: Baseline++ [29] 4 Conv 6053 £0.83% 7934 £0.61% 0 ws50r0a% BI908% BBLOME AISEOE  S63E0SE  6276+050%
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[ image Encoder Stage A: Self-supervised Image Pre-train Stage B: Meta Learning e == Gl g 1), Ck Ours_CUB150_SSL AmdimNet 71.85 £ 0.22% 84.29 4+ 0.15%  Oustans 8344+061% 9043+£052% 9471+047% 9LT9I+048% 9738+ 0.65% 9950 + 0.63%
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S| (zi,y;)€S , , . Table 2. Few-shot classification accuracy results on CUB Aabie 5: Cross-GomAn. [ewEHoL |earing (ests on Iour daiascts
. . A dist function d and q In a short conclusion, during training, the dataset [23]. '—’ indicates result without meta-learning. For each
Ou r CO ntri bUt'On , IS, an(?e Hnetion @ an prc.) Hee proposed method first applies an SSL way to task, the best-performing method is highlighted.
distribution over all classes given a query pre-train a large scale embedding network in
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Q Code is available at httpS://github.Com/phecy/SSL-FEW-SHOT / \dataset for satellite images, 2) ISIC [27] a medical skin image dataset, 4) ChestX [28], a dataset for X- /

ray chest images.
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