Structured Support Exploration For Multilayer Sparse Matrix Factorization

Quoc Tung Le Rémi Gribonval

Université de Lyon, Ecole Normale Supérieure de Lyon
INRIA, CNRS, Laboratoire du Parallélisme
ICASSP 6-11 June 2021

Multilayer sparse matrix factorization problem

- Given a matrix A, we would like to find J matrices $S_{1}, S_{2}, \ldots, S_{J}$ satisfying

$$
A \approx S_{1} S_{2} \ldots S_{\jmath}
$$

such that $S_{1}, S_{2}, \ldots S_{J}$ are sparse matrices.

Motivation: Faster linear operator

- Given a matrix $A \approx S_{1} S_{2} \ldots S_{J}$ and a vector x, then

$$
\begin{equation*}
A x \approx S_{1}\left(S_{2}\left(\ldots\left(S_{J} x\right)\right)\right) \tag{1}
\end{equation*}
$$

Motivation: Faster linear operator

- Given a matrix $A \approx S_{1} S_{2} \ldots S_{J}$ and a vector x, then

$$
\begin{equation*}
A x \approx S_{1}\left(S_{2}\left(\ldots\left(S_{J} x\right)\right)\right) \tag{1}
\end{equation*}
$$

- If $S_{1}, S_{2}, \ldots, S_{J}$ are sparse matrices, evaluating the RHS of equation (1) must be faster than directly evaluating the LHS.

Motivation: Faster linear operator

- Given a matrix $A \approx S_{1} S_{2} \ldots S_{J}$ and a vector x, then

$$
\begin{equation*}
A x \approx S_{1}\left(S_{2}\left(\ldots\left(S_{J} x\right)\right)\right) \tag{1}
\end{equation*}
$$

- If $S_{1}, S_{2}, \ldots, S_{J}$ are sparse matrices, evaluating the RHS of equation (1) must be faster than directly evaluating the LHS.
- Application: the Fast Fourier Transform, the Fast Hadamard Transform, etc.

The factorization of the Discrete Fourier Transform.

(1) Introduction and motivation

(2) Main approach and tools
(3) Contribution 1: Support Exploration For Sparse Matrix Factorization
(4) Contribution 2: Promotion of k-regular sparse matrix
(5) Conclusion

Problem formulation

Sparse Factorization Problem Formulation

Given a matrix $A, J \in \mathbb{N}$ and $\delta_{\mathcal{E}_{j}}$ as indicator function of set \mathcal{E}_{j}, solve:

$$
\begin{equation*}
\operatorname{Minimize}_{S_{1}, \ldots, S_{J}}^{\left\|A-\prod_{j=1}^{J} S_{j}\right\|_{F}^{2}}+\underbrace{\| \underbrace{\sum_{j=1}^{J} \delta_{\mathcal{E}_{j}}\left(S_{j}\right)}_{\text {Sparsity-inducing penalty }}}_{\text {Data fidelity }} \tag{2}
\end{equation*}
$$

Problem formulation

Sparse Factorization Problem Formulation

Given a matrix $A, J \in \mathbb{N}$ and $\delta_{\mathcal{E}_{j}}$ as indicator function of set \mathcal{E}_{j}, solve:

$$
\begin{equation*}
\text { Minimize }_{S_{1}, \ldots, S_{J}}^{\left\|A-\prod_{j=1}^{J} S_{j}\right\|_{F}^{2}}+\underbrace{\| \underbrace{\sum_{j=1}^{J} \delta_{\mathcal{E}_{j}}\left(S_{j}\right)}_{\text {Sparsity-inducing penalty }}}_{\text {Data fidelity }} \tag{2}
\end{equation*}
$$

Choice of matrices set \mathcal{E} :

- $\mathcal{E}_{\text {row }}^{k}=\left\{S \mid\left\|S_{i, \bullet}\right\|_{0} \leq k\right\}:$ at most k nonzero entries per row.
- $\mathcal{E}_{c o l}^{k}=\left\{S \mid\left\|S_{\bullet, i}\right\|_{0} \leq k\right\}$: at most k nonzero entries per column.
- $\mathcal{E}_{\text {tot }}^{k}=\left\{S \mid\|S\|_{0} \leq k\right\}$: at most k nonzero entries in total.

Problem Approach - State of The Art

- MAIN TOOLS: proximal operator and proximal algorithm ${ }^{1}$.

[^0]
Problem Approach - State of The Art

- MAIN TOOLS: proximal operator and proximal algorithm ${ }^{1}$.
- STATE OF THE ART: Proximal Alternating Linearized Minimization (PALM) ${ }^{2}$, and its applications in matrix factorization. ${ }^{3}$.

[^1]
Problem Approach－State of The Art

－MAIN TOOLS：proximal operator and proximal algorithm ${ }^{1}$ ．
－STATE OF THE ART：Proximal Alternating Linearized Minimization（PALM）${ }^{2}$ ，and its applications in matrix factorization．${ }^{3}$ ．
－PALM IN A NUTSHELL：
1：for $j \in\{1, \ldots, J\}$ do
2：$S_{j}^{i+1} \leftarrow P_{\mathcal{E}_{j}} \underbrace{\left(S_{j}^{i}-\frac{1}{c_{j}^{j}} \nabla_{S_{j}}\left\|A-\lambda\left(\prod_{l=1}^{j-1} S_{l}^{i+1}\right)\left(\prod_{l=j}^{J} S_{l}^{i}\right)\right\|_{F}^{2}\right)}_{\text {gradient step }}$

3：end for

[^2]
Problems with PALM

- PROBLEM 1: PALM is lazy at exploring support. CONTRIBUTION 1: Enforce the search of support with a new algorithm.
- PROBLEM 2: Proximal operators of existing sparse matrix sets often produce rank deficient factors.

CONTRIBUTION 2: Propose a new family of sparse matrices to avoid rank deficiency.

Support Exploration Laziness and Rank Deficiency

The evolution of support of factors of PALM during the Hadamard Transform factorization. Yellow indicates the support.

(1) Introduction and motivation

(2) Main approach and tools

(3) Contribution 1: Support Exploration For Sparse Matrix Factorization

4 Contribution 2: Promotion of k-regular sparse matrix

(5) Conclusion

Bilinear Hard Thresholding Pursuit (BHTP)

- Consider 2-factor factorization: $A=S_{1} S_{2}=X Y, X \in \mathcal{E}_{X}, Y \in \mathcal{E}_{Y}$.

[^3] (Jan. 2011), pp. 2543-2563.

Bilinear Hard Thresholding Pursuit (BHTP)

- Consider 2-factor factorization: $A=S_{1} S_{2}=X Y, X \in \mathcal{E}_{X}, Y \in \mathcal{E}_{Y}$.
- If X is known, finding Y is a linear inverse problem.

[^4]
Bilinear Hard Thresholding Pursuit (BHTP)

- Consider 2-factor factorization: $A=S_{1} S_{2}=X Y, X \in \mathcal{E}_{X}, Y \in \mathcal{E}_{Y}$.
- If X is known, finding Y is a linear inverse problem.
- Proposal: Using Hard Thresholding Pursuit ${ }^{4}$.

[^5]
Bilinear Hard Thresholding Pursuit (BHTP)

- Consider 2-factor factorization: $A=S_{1} S_{2}=X Y, X \in \mathcal{E}_{X}, Y \in \mathcal{E}_{Y}$.
- If X is known, finding Y is a linear inverse problem.
- Proposal: Using Hard Thresholding Pursuit ${ }^{4}$.

1: $Y_{0}=0$.
2: for $n \in\{1, \ldots, N\}$ do
3: $\quad T_{n}=\operatorname{supp}(P_{\mathcal{E}_{Y}} \underbrace{\left(Y_{n-1}-\lambda \nabla_{Y}\left\|A-X Y_{n-1}\right\|^{2}\right)}_{\text {gradient step }})$.
4: $\quad Y_{n}=\underset{Y}{\arg \min }\|A-X Y\|, \operatorname{supp}(Y) \subseteq T_{n}\left(\right.$ orthogonal projection). ${ }^{5}$
5: end for

[^6]
Bilinear Hard Thresholding Pursuit (BHTP)

- Consider 2-factor factorization: $A=S_{1} S_{2}=X Y, X \in \mathcal{E}_{X}, Y \in \mathcal{E}_{Y}$.
- If X is known, finding Y is a linear inverse problem.
- Proposal: Using Hard Thresholding Pursuit ${ }^{4}$.

1: $Y_{0}=0$.
2: for $n \in\{1, \ldots, N\}$ do
3: $\quad T_{n}=\operatorname{supp}(P_{\mathcal{E}_{Y}} \underbrace{\left(Y_{n-1}-\lambda \nabla_{Y}\left\|A-X Y_{n-1}\right\|^{2}\right)}_{\text {gradient step }})$.
4: $\quad Y_{n}=\underset{Y}{\arg \min }\|A-X Y\|, \operatorname{supp}(Y) \subseteq T_{n}\left(\right.$ orthogonal projection). ${ }^{5}$
5: end for

- Alternating between two factors (Bilinear Hard Thresholding Pursuit).

[^7]
Experimental Results

- Factorize a leadfield matrix MEG, (in functional brain imaging), $A \in \mathrm{R}^{8193 \times 204}$.
- Constraints: $\mathcal{E}_{X}=\mathcal{E}_{\text {col }}^{k_{0}}, \mathcal{E}_{Y}=\mathcal{E}_{\text {row }}^{k}$.
- Measure: Relative error $=\|A-X Y\|_{F} /\|A\|_{F}$.

The error of BHTP and PALM factorizing the matrix MEG.

(1) Introduction and motivation

(2) Main approach and tools

(3) Contribution 1: Support Exploration For Sparse Matrix Factorization
(4) Contribution 2: Promotion of k-regular sparse matrix

Motivation

- Factors of the Hadamard Transform (and the Discrete Fourier Transform) have 2 nonzero entries per row and column.

The factorization of the Discrete Fourier Transform.

Motivation

- Factors of the Hadamard Transform (and the Discrete Fourier Transform) have 2 nonzero entries per row and column.

The factorization of the Discrete Fourier Transform.

Definition

A k-regular sparse matrix $U \in \mathbb{C}^{n \times n}$ is a matrix whose columns and rows contain at most k non-zero entries each.
Let \mathcal{R}_{k} be the set of all k-regular matrices.

Motivation

- Factors of the Hadamard Transform (and the Discrete Fourier Transform) have 2 nonzero entries per row and column.

The factorization of the Discrete Fourier Transform.

Definition

A k-regular sparse matrix $U \in \mathbb{C}^{n \times n}$ is a matrix whose columns and rows contain at most k non-zero entries each.
Let \mathcal{R}_{k} be the set of all k-regular matrices.
Problem: How to project a matrix onto \mathcal{R}_{k}.

Generalized Hungarian Method (GHM)

- Proximal operator corresponding to \mathcal{R}_{k} can be reduced to a bipartite graph problem. Our proposed algorithm generalizes the Hungarian Method (hence the name Generalized Hungarian Method).

Generalized Hungarian Method (GHM)

- Proximal operator corresponding to \mathcal{R}_{k} can be reduced to a bipartite graph problem. Our proposed algorithm generalizes the Hungarian Method (hence the name Generalized Hungarian Method).
- The complexity is $O\left(k n^{3}\right)$.

Generalized Hungarian Method (GHM)

- Proximal operator corresponding to \mathcal{R}_{k} can be reduced to a bipartite graph problem. Our proposed algorithm generalizes the Hungarian Method (hence the name Generalized Hungarian Method).
- The complexity is $O\left(k n^{3}\right)$.

The result of PALM with different proximal operators.

(1) Introduction and motivation

(2) Main approach and tools

(3) Contribution 1: Support Exploration For Sparse Matrix Factorization
(4) Contribution 2: Promotion of k-regular sparse matrix

(5) Conclusion

Conclusion

Highlight of the paper:

- Analysis of the laziness of PALM in exploring the support. This holds with many other proximal algorithms as well
\rightarrow Contribution 1: Bilinear Hard Thresholding Pursuit.
- Rank deficient factors produced by existing proximal operator. \rightarrow Contribution 2: k-regular sparse matrix and its proximal operator.

Conclusion

Highlight of the paper:

- Analysis of the laziness of PALM in exploring the support. This holds with many other proximal algorithms as well
\rightarrow Contribution 1: Bilinear Hard Thresholding Pursuit.
- Rank deficient factors produced by existing proximal operator.
\rightarrow Contribution 2: k-regular sparse matrix and its proximal operator.
What is left for future work:
- Other operators (such as the Discrete Fourier Transform (DFT)) resist the current algorithms.
\rightarrow Possible causes: Complex value optimization, the DFT admits fewer exact factorizations.
- Extension for nonlinear setting (Neural Networks, etc).

Practical implementation - Pyfaust

- Visit faust.inria.fr.
- Available for python with "pip install pyfaust" and also for Matlab.
- Includes GPU accelerations

Practical implementation - Pyfaust

- Visit faust.inria.fr.
- Available for python with "pip install pyfaust" and also for Matlab.
- Includes GPU accelerations

Linearization

Primal for Lorenz component L_{k}

$$
\begin{array}{lll}
\min k r_{k}-\sum_{i=1}^{n} d_{k i} & & \\
\text { s.t. } r_{k}-y_{i} & \geq d_{k i} & \forall i \in[n], \forall k \in[n] \\
d_{k i} & \geq M z_{k i} & \forall i \in[n], \forall k \in[n] \\
\sum_{i=1}^{n} z_{k i} & \leq k-1 & \forall k \in[n] \\
d_{k i} & \leq 0 & \forall i \in[n], \forall k \in[n] . \tag{3}
\end{array}
$$

[^0]: ${ }^{1}$ Neal Parikh and Stephen Boyd. "Proximal Algorithms". In: Found. Trends Optim. 1.3 (Jan. 2014), 127-239. ISSN: 2167-3888. DOI: $10.1561 / 2400000003$.

[^1]: ${ }^{1}$ Neal Parikh and Stephen Boyd. "Proximal Algorithms". In: Found. Trends Optim. 1.3 (Jan. 2014), 127-239. ISSN: 2167-3888. DOI: $10.1561 / 2400000003$.

 2 Jerome Bolte, Shoham Sabach, and Marc Teboulle. "Proximal alternating linearized minimization for nonconvex and nonsmooth problems". In: Mathematical Programming 146.1-2 (2014), pp. 459-494.
 ${ }^{3}$ Luc Le Magoarou and Rémi Gribonval. "Flexible Multi-layer Sparse Approximations of Matrices and Applications". In: IEEE Journal of Selected Topics in Signal Processing 10.4 (June 2016), pp. 688-700.

[^2]: ${ }^{1}$ Neal Parikh and Stephen Boyd．＂Proximal Algorithms＂．In：Found．Trends Optim． 1.3 （Jan．2014），127－239．ISSN： 2167－3888．DOI： $10.1561 / 2400000003$.

 2 Jerome Bolte，Shoham Sabach，and Marc Teboulle．＂Proximal alternating linearized minimization for nonconvex and nonsmooth problems＂．In：Mathematical Programming 146．1－2（2014），pp．459－494．
 ${ }^{3}$ Luc Le Magoarou and Rémi Gribonval．＂Flexible Multi－layer Sparse Approximations of Matrices and Applications＂．In：IEEE Journal of Selected Topics in Signal Processing 10.4 （June 2016），pp．688－700．4 ロ 4 回 \＆三 \＆三

[^3]: ${ }^{4}$ Simon Foucart. "Hard Thresholding Pursuit: An Algorithm for Compressive Sensing". In: SIAM J. Numerical Analysis 49

[^4]: ${ }^{4}$ Simon Foucart. "Hard Thresholding Pursuit: An Algorithm for Compressive Sensing". In: SIAM J. Numerical Analysis 49 (Jan. 2011), pp. 2543-2563.

[^5]: ${ }^{4}$ Simon Foucart. "Hard Thresholding Pursuit: An Algorithm for Compressive Sensing". In: SIAM J. Numerical Analysis 49 (Jan. 2011), pp. 2543-2563.

[^6]: ${ }^{4}$ Simon Foucart. "Hard Thresholding Pursuit: An Algorithm for Compressive Sensing". In: SIAM J. Numerical Analysis 49 (Jan. 2011), pp. 2543-2563.
 ${ }^{5}$ Can be replaced by multiple gradient steps to reduce calculating time

[^7]: ${ }^{4}$ Simon Foucart. "Hard Thresholding Pursuit: An Algorithm for Compressive Sensing". In: SIAM J. Numerical Analysis 49 (Jan. 2011), pp. 2543-2563.
 ${ }^{5}$ Can be replaced by multiple gradient steps to reduce calculating time

