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Motivation and Abstract

State Estimation

State estimation of a dynamical system in real-time is one of the most
fundamental problems in signal processing with countless real-life
applications.

In this work we focus on architectures that can be deployed on
embedded mobile devices such as drones and vehicular systems with
limited computational resources.
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Motivation and Abstract

Kalman Filter — Classical Approach

For systems that are well-represented by a fully known linear
Gaussian state-space (SS) model, the Kalman filter (KF) is a low
complexity optimal solution.
KF and its variants are model-based (MB) algorithms, their
performance critically depends on the validity of the key
assumption that the underlying SS model is accurately known.
However, both linearity and accurate knowledge of the model are
often not encountered in practice.
For non-linear models, these approaches are not theoretically
optimal, and suffer from severe degradation in the face of strong
non-linearity.
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Motivation and Abstract

Success of SOA NNs

SOA (recurrent) neural networks (NNs) have demonstrated
remarkable success in real-life (time series) applications

NNs can catch the subtleties of the true generative process and
replace the need to explicitly characterize the domain of interest.

They can be trained in an end-to-end model-agnostic manner
from a large quantity of data to capture complex dynamics.

These data-driven architectures lack the interpretability of
model-based methods and tend to require many trainable
parameters.

These constraints limit the application of deep NNs for real-time
state estimation on hardware-limited mobile devices.
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Motivation and Abstract

KalmanNet — Our Approach

We integrated a dedicated recurrent neural network into the KF
flow and learned to carry out Kalman filtering under non-linear
complex dynamics, with unknown noise and model mismatch.

Using the structure of the SS model, we retained data efficiency
and interpretability of the classic algorithm, and achieved a
low-complexity solution.

Numerical evaluations shows that we outperform the classic
filtering methods

The design of KalmanNet was found to be scalable to other state
estimation tasks; e.g., smoothing, and proved to be suitable for
deployments on systems with very limited computational
resources - the ETH Zürich autonomous racing car.
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Motivation and Abstract
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State Space Model

State Space Model

We consider a partially-observable time-invariant dynamical system
represented by (possibly) non-linear, Gaussian continuous SS
evolution model in discrete time t ∈ Z:

xt = f (xt−1) + et , et ∼ N (0,Q) , xt ∈ Rm. (1a)

yt = h (xt ) + vt , vt ∼ N (0,R) , yt ∈ Rn. (1b)
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Classical Kalman Filtering

Classical Kalman Filtering

The KF was introduced in a pioneering work by R.E. Kalman in
the 1960s.

It is an optimal minimum mean-squared error (MMSE) estimator
that is applicable to time varying linear systems with additive white
Gaussian noise (AWGN).

Because it is a recursive linear filter with low-complexity and a
sound theoretical basis, it is considered the workhorse of state
estimation in discrete-time.

It was applied to various tracking problems (e.g., radar and a
ballistic missile). Most noteworthy was the use of NASA to
estimate the position and velocity of a space vehicle in a trip to the
moon.
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Classical Kalman Filtering

(Extended) Kalman Filter Computation

KF estimates xt using only the new observation yt and the previous
estimate x̂t−1, with constant computational complexity.

Prediction of the a priori moments:

x̂t |t−1 = f (x̂t−1) , Σt |t−1 = F̂t · Σt−1 · F̂>t + Q,

ŷt |t−1 = h
(
x̂t |t−1

)
, St |t−1 = Ĥt · Σt |t−1 · Ĥ>t + R.

Updating the a posteriori moments given the new observed yt :

x̂t = x̂t |t−1 + Kt ·∆yt , ∆yt = yt − ŷt |t−1

Σt = Σt |t−1 −Kt · St |t−1 ·K>t , Kt = Σt |t−1 · Ĥ>t · S−1
t |t−1 .

F̂t and Ĥt are the matrices of partial derivatives (i.e., Jacobians) of f
and h, evaluated at x̂t |t−1 .
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Classical Kalman Filtering

Kalman Filter — Block Diagram
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KalmanNet Architecture

KalmanNet Design Idea - Maintain the Basic KF Flow

What should be the SS internals that needs to be learned?
The Kalman gain which depends on unknown second order
moments.
What should be the architecture of such a network?
The recursive nature of the Kalman gain computation indicates
that its learned module should involve an internal memory element
as a recurrent NN with low complexity - a gated recurrent unit.
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KalmanNet Architecture

From which input signals will the network learn?

The difference between subsequent observations
Innovation
The difference between subsequent posterior estimates
The difference between prior to posterior
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KalmanNet Architecture

How will this NN be trained from data?

KalmanNet is trained offline using labeled data. The data set is
composed of N length T trajectories, denoted {Yi ,Xi}N1 :

Yi =
[
y(i)

1 , . . . ,y(i)
T

]
Xi =

[
x(i)

1 , . . . ,x(i)
T

]
With a MSE loss function:

`i (Θ) =
1
T

T∑
t=1

∥∥∥ΨΘ

(
x̂(i)

t−1,y
(i)
t

)
−x(i)

t

∥∥∥2
+ γ · ‖Θ‖2 ,

Optimisation through a variant of mini-batch stochastic gradient
descent: randomly choose M < N trajectories indexed ik1 , . . . , i

k
M from

the training set, computing the batch loss as

Lk (Θ) =
1
M

M∑
j=1

`ikj
(Θ) .
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KalmanNet Architecture

Linear Systems

Full information - KalmanNet achieves MMSE lower bound. It is
applicable to different trajectory lengths and initial conditions than
those on which it was trained - shows that it learns to filter rather
to reconstruct trajectories from training data.
Partial information - We rotate the evolution matrix F by α = 10◦.
While KF opens a noticeable gap from the MMSE, KalmanNet is
able to learn to close this gap from data.
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Guy Revach (ETH Zürich - ISI) KalmanNet ICASSP 2021 (Toronto) 14 / 20



KalmanNet Architecture

Lorenz Attractor - Non-Linear chaotic system

Set of differential equations that simulate complex dynamics.
KalmanNet recovers the extended Kalman filter (EKF) results in a
scenario in which it is nearly optimal.
We rotate the observation matrix H by θ = 1◦. While EKF almost
performs worse than the noise floor, KalmanNet is able to learn to
close this gap from data.
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Guy Revach (ETH Zürich - ISI) KalmanNet ICASSP 2021 (Toronto) 15 / 20



KalmanNet Architecture

Non-Linear Decimation — KalmanNet Outperforms
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Extensions and Conclusions

NCLT — North Campus Long-Term Dataset

GPS and odometry sensor data of a Segway moving through the
campus of Michigan Uni. with ground truth positioning available.
Model: 2D model with constant velocity. State: x = (px , vx ,py , vy )>.
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Extensions and Conclusions Kalman Smoothing

Kalman Smoothing - Offline Estimation (with William Ni)

We utilize the structure of the RTS smoother and add a backward-pass
to the forward-pass. We learn two gains simultaneously; the forward
gain and the backward gain; using two recurrent neural networks in a
cascade.

x̂t |T = x̂t |t + Ks,t ·∆x+
t+1|T , (3a)

∆x+
t+1|T = x̂t+1|T − x̂t+1|t . (3b)
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Extensions and Conclusions Velocity Estimation

Velocity Estimation for Autonomous Racing Car

Embedding KalmanNet in the ETH Zürich autonomous (driver-less)
racing car as a velocity estimation module raises various challenges:

Critical for performance.
Critical for safety→ robust to observation outliers.
Sensors have different sensing frequencies.
Deployment on a low-end computer with limited computational
resources.
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Extensions and Conclusions Velocity Estimation

Conclusions

KalmanNet combines deep learning with the classic KF.

Our design identifies the SS-model-dependent computations of
the KF, replacing them with a dedicated NN; i.e., Kalman gain.

Doing so enables KalmanNet to carry out real-time state
estimation in the same manner as the KF, while learning to
overcome model mismatches and non-linearities.

KalmanNet uses a relatively compact NN that can be trained with
a relatively small data set, and infers with a reduced complexity,
making it applicable for high dimensional SS models and
computationally limited devices.
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