2021 IEEE International Conference on Acoustics, Speech and Signal Processing

Bandwidth Extension is All You Need

Jiaqi Su^{1,2}, Yunyun Wang¹, Adam Finkelstein¹, Zeyu Jin²

¹Princeton University

²Adobe Research

Motivation "Sweet spot" for efficiency **Audio Applications** 8k, 16kHz Vocoders Voice Conversion Source Separation **But lost sense** Denoisers of presence

Motivation

Motivation

Bandwidth extension is all you need!

Previous Work: Bandwidth Extension

Most limited to 8-16kHz for wideband

- Traditional Signal Processing Methods
 NMF {Bansal 2005}, LPC [Bachhav 2018], HMMs [Jax 2003], GMMs [Seo 2014]
- Learning-based Spectral Methods
 DNN [Li 2015], Variational Auto-Encoders [Bachhav 2020], U-Nets [Eskimez 2019],
 RNN [Schmidt 2018]
 - Over-smoothing details, phase approximation
- Learning-based Waveform Methods
 - Audio super resolution [Kuleshov 2017]
 - WaveNet [Wang 2018, Gupta 2019], Hierarchical RNN [Ling 2018], EnvNet [Li 2019],
 Time-Frequency Networks [Lim 2018], time-frequency losses [Wang 2020]
 - FFTNet with perceptual loss [Feng 2019] Only method reaching 44kHz

Previous Work: Generative Adversarial Networks

GAN in Bandwidth Extension

Simple discriminators on spectral features [Li 2018, Eskimez 2019, Bachhav 2020]

➤ Waveform discriminator rarely used

- GAN in other speech processing domains
 - MelGAN [Kumar 2019]: feature matching loss of discriminators
 - O HiFi-GAN [Su 2020]: multi-domain discriminators
 - ➤ Similar ideas can apply to BWE problem

Method

Adapt from **HiFi-GAN** [Su 2020]: Feed-forward WaveNet with deep feature matching in adversarial training

Experiments

 Clean speech bandwidth extension baseline comparison study

2. Bandwidth extension for speech denoising

3. Bandwidth extension for waveform generation

Experiments: BWE

- Baselines
 - 8k: input (ground truth downsampled to 8k)
 - 16k: input (ground truth downsampled to 16k)
 - 44k: ground truth
 - HiFi-GAN+: our full approach
 - **❖ Base:** feed-forward WaveNet
 - **SpecGAN:** use of the spectrogram discriminator only
 - O LP: linear prediction based analysis synthesis [Bachhav 2018]
 - Spec: a spectral-domain method using 1D conv U-Net with GAN [Eskimez 2019]
 - Time: a time-domain method using EnvNet structure with GAN [Li 2019]
 - **FFTNet:** FFTNet variant for BWE [Feng 2019]
- Dataset

Ours

Baselines

- Train: VCTK dataset [Veaux 2016]
- Test: Device and Produced Speech (DAPS) clean set [Mysore 2015]

Experiments: BWE - Objective Evaluations

Observation: Objective metrics do not correlate well with perceptual quality.

Experiments: BWE - Subjective Evaluations

Preference test

- 200 subjects
- 2,675 answers

Observation: 16k-to-48k BWE by HiFi-GAN+ is typically indistinguishable from real 48kHz.

Experiments: BWE - Demo

Experiments: BWE - Demo

Experiments: BWE for Denoising

Experiments: BWE for Denoising

Observation: Consistent quality boost to enhancement algorithms

Experiments: BWE for Denoising - Demo

Experiments: BWE for Waveform generation

Experiments: BWE for Waveform generation

Observation: Consistent quality boost to vocoder algorithms

Experiments: BWE for Waveform generation - Demo

More audio examples

https://daps.cs.princeton.edu/projects/Su2020BWE/

Conclusions

- A bandwidth extension method based on HiFi-GAN targeting at up to 48kHz, as a general tool to enhance other audio applications.
- Objective and subjective evaluations with STOA baselines on 8k-to-48kHz and 16k-to-48kHz BWE tasks.
- Evaluations on applying BWE to outputs of a variety of denoisers and vocoders.

Thanks for watching!