

Class-imbalanced Classifiers using Ensembles of Gaussian Processes and Gaussian Process Latent Variable Models

Liu Yang*, Cassandra Heiselman[†], J. Gerald Quirk[†], Petar M. Djurić^{*}

* Department of Electrical & Computer Engineering, Stony Brook University,

† Department of Obstetrics, Gynecology and Reproductive Medicine, Stony Brook University Hospital, Stony Brook, NY, 11794, USA

IEEE ICASSP 2021

Overview

*****Motivation

*****Problem Formulation

- *Gaussian Process Latent Variable Model (GPLVM) for Ensemble Classification
- *****Experiments
- *****Conclusions

Motivation

Picture sources: https://www.helcim.com/article/overview-credit-card-transaction-types/ https://nano-magazine.com/news/2020/8/25/nanoengineered-biosensors-for-early-disease-detection

FAR BEYOND

Motivation

In our project, "Machine Learning Methods for Revealing the Wellbeing of Fetuses", we face the severe imbalanced fetal heart rate (FHR) recordings.

> Only 0.1% FHR tracings are classified into abnormal group.

Picture source: https://www.stonybrook.edu/commcms/electrical/research/2021/djuric.php

Problem Formulation

The training set contains a majority class and a minority class:

a

 $\mathcal{D} = \mathcal{C}_1 \cup \mathcal{C}_2 \qquad \mathcal{C}_1 = \{ (\mathbf{x}_i, +1) | i = 1, 2, \dots, n_{c_1} \} \\ \mathcal{C}_2 = \{ (\mathbf{x}_j, -1) | j = 1, 2, \dots, n_{c_2} \} \qquad n_{c_1} \gg n_{c_2}$

Problem Formulation

The training set contains a majority class and a minority class: Rewritten: $\mathcal{D} = \{\mathbf{X}, \mathbf{y}\}$ $\mathbf{X} \in \mathbb{R}^{dx \times n}$ $\mathbf{y} \in \mathbb{R}^n$ $n = n_{c_1} + n_{c_2}$ Similarly, the test set: $\mathcal{D}^* = \{\mathbf{X}^*, \mathbf{y}^*\}$ $\mathbf{X}^* \in \mathbb{R}^{dx \times n^*}$ $\mathbf{y}^* \in \mathbb{R}^{n^*}$

а

FAR

GPLVM for Ensemble Classification

One of the popular strategies to reduce the effect of performance distortion towards the majority class in the training process is ensemble clearing.

FAR

GPLVM for Ensemble Classification

Training data resampling we under-sampled the majority class without replacement and oversampled the minority class by applying SMOTE*.

*SMOTE: Synthetic Minority Over-sampling Technique

8

For each branch

The posterior

$$p(\mathbf{f}|\mathbf{X}_k, \mathbf{y}_k) = \frac{p(\mathbf{y}_k|\mathbf{f})p(\mathbf{f}|\mathbf{X}_k)}{p(\mathbf{y}_k|\mathbf{X}_k)}$$

For each branch

The posterior

$$p(\mathbf{f}|\mathbf{X}_k, \mathbf{y}_k) = \frac{p(\mathbf{y}_k|\mathbf{f})p(\mathbf{f}|\mathbf{X}_k)}{p(\mathbf{y}_k|\mathbf{X}_k)}$$

The predictive distribution

$$p(\mathbf{f}^*|\mathbf{X}^*, \mathbf{X}_k, \mathbf{y}_k) = \int p(\mathbf{f}^*|\mathbf{X}^*, \mathbf{X}_k, \mathbf{f}) p(\mathbf{f}|\mathbf{X}_k, \mathbf{y}_k) d\mathbf{f}$$

For each branch

The posterior

$$p(\mathbf{f}|\mathbf{X}_k, \mathbf{y}_k) = \frac{p(\mathbf{y}_k|\mathbf{f})p(\mathbf{f}|\mathbf{X}_k)}{p(\mathbf{y}_k|\mathbf{X}_k)}$$

The predictive distribution

$$p(\mathbf{f}^*|\mathbf{X}^*, \mathbf{X}_k, \mathbf{y}_k) = \int p(\mathbf{f}^*|\mathbf{X}^*, \mathbf{X}_k, \mathbf{f}) p(\mathbf{f}|\mathbf{X}_k, \mathbf{y}_k) d\mathbf{f}$$

The Gaussian approximation

$$q(\mathbf{f}^*|\mathbf{X}^*, \mathbf{X}_k, \mathbf{y}_k) = \mathcal{N}(\mathbf{f}^*|\overline{\mathbf{f}}_k^*, \mathbf{\Sigma}_{\mathbf{f}^*, k})$$

FAR BEYOND

FAR BEYOND

Let $\mathbf{F}^* = [\mathbf{f}_1^*, \mathbf{f}_2^*, \dots, \mathbf{f}_K^*] \in \mathbb{R}^{n^* \times K}$ be an observation matrix and $\mathbf{f}^* \in \mathbb{R}^{n^*}$ be an unknown true test latent vector.

We have a nonlinear mapping

 $\mathbf{F}^* = \mathbf{G}(\mathbf{f}^*) + \mathbf{E}$

Function G(•) defines K independent GPs $\mathbf{f}_k^* = \mathbf{g}_k(\mathbf{f}^*) \sim \mathcal{GP}(\mathbf{m}(\mathbf{f}^*), \mathbf{K}(\mathbf{f}^*, \mathbf{f}^*))$ E contains i.i.d. zero-mean Gaussian noises

 $\epsilon \sim \mathcal{N}(0,\sigma^2)$

Let $\mathbf{F}^* = [\mathbf{f}_1^*, \mathbf{f}_2^*, \dots, \mathbf{f}_K^*] \in \mathbb{R}^{n^* \times K}$ be an observation matrix and $\mathbf{f}^* \in \mathbb{R}^{n^*}$ be an unknown true test latent vector.

We have a nonlinear mapping

 $\mathbf{F}^* = \mathbf{G}(\mathbf{f}^*) + \mathbf{E}$

Function G(•) defines K independent GPs $\mathbf{f}_k^* = \mathbf{g}_k(\mathbf{f}^*) \sim \mathcal{GP}(\mathbf{m}(\mathbf{f}^*), \mathbf{K}(\mathbf{f}^*, \mathbf{f}^*))$

E contains i.i.d. zero-mean Gaussian noises $\epsilon \sim \mathcal{N}(0,\sigma^2)$

Then, the likelihood function is $p(\mathbf{F}^*|\mathbf{f}^*) = \prod_{k=1}^{K} p(\mathbf{f}_k^*|\mathbf{f}^*)$ $= \prod_{k=1}^{K} \iint p(\mathbf{f}_k^*|\overline{\mathbf{f}}_k^*) p(\overline{\mathbf{f}}_k^*|\mathbf{v}_k, \mathbf{f}^*) p(\mathbf{v}_k|\mathbf{f}^*) d\overline{\mathbf{f}}_k^* d\mathbf{v}_k$

FAR BEYOND

Let $\mathbf{F}^* = [\mathbf{f}_1^*, \mathbf{f}_2^*, \dots, \mathbf{f}_K^*] \in \mathbb{R}^{n^* \times K}$ be an observation matrix and $\mathbf{f}^* \in \mathbb{R}^{n^*}$ be an unknown true test latent vector.

We have a nonlinear mapping

 $\mathbf{F}^* = \mathbf{G}(\mathbf{f}^*) + \mathbf{E}$

Function G(•) defines K independent GPs $\mathbf{f}_k^* = \mathbf{g}_k(\mathbf{f}^*) \sim \mathcal{GP}(\mathbf{m}(\mathbf{f}^*), \mathbf{K}(\mathbf{f}^*, \mathbf{f}^*))$

E contains i.i.d. zero-mean Gaussian noises $\epsilon \sim \mathcal{N}(0,\sigma^2)$

Then. the likelihood function is

$$\begin{split} p(\mathbf{F}^*|\mathbf{f}^*) &= \prod_{k=1}^{K} p(\mathbf{f}_k^*|\mathbf{f}^*) \\ &= \prod_{k=1}^{K} \iint p(\mathbf{f}_k^*|\overline{\mathbf{f}}_k^*) p(\overline{\mathbf{f}}_k^*|\mathbf{v}_k, \mathbf{f}^*) p(\mathbf{v}_k|\mathbf{f}^*) d\overline{\mathbf{f}}_k^* d\mathbf{v}_k \end{split}$$

Considering the outputs from GPCs $q(\mathbf{f}^*|\mathbf{X}^*, \mathbf{X}_k, \mathbf{y}_k) = \mathcal{N}(\mathbf{f}^*|\overline{\mathbf{f}}_k^*, \mathbf{\Sigma}_{\mathbf{f}^*, k})$

Let $\mathbf{F}^* = [\mathbf{f}_1^*, \mathbf{f}_2^*, \dots, \mathbf{f}_K^*] \in \mathbb{R}^{n^* \times K}$ be an observation matrix and $\mathbf{f}^* \in \mathbb{R}^{n^*}$ be an unknown true test latent vector.

We have a nonlinear mapping

 $\mathbf{F}^* = \mathbf{G}(\mathbf{f}^*) + \mathbf{E}$

Function G(•) defines K independent GPs $\mathbf{f}_k^* = \mathbf{g}_k(\mathbf{f}^*) \sim \mathcal{GP}(\mathbf{m}(\mathbf{f}^*), \mathbf{K}(\mathbf{f}^*, \mathbf{f}^*))$

E contains i.i.d. zero-mean Gaussian noises $\epsilon \sim \mathcal{N}(0,\sigma^2)$

Then, the likelihood function is

$$\begin{split} p(\mathbf{F}^*|\mathbf{f}^*) &= \prod_{k=1}^{K} p(\mathbf{f}_k^*|\mathbf{f}^*) \\ &= \prod_{k=1}^{K} \iint p(\mathbf{f}_k^*|\overline{\mathbf{f}}_k^*) p(\overline{\mathbf{f}}_k^*|\mathbf{v}_k, \mathbf{f}^*) p(\mathbf{v}_k|\mathbf{f}^*) d\overline{\mathbf{f}}_k^* d\mathbf{v}_k \end{split}$$

Considering the outputs from GPCs $q(\mathbf{f}^*|\mathbf{X}^*, \mathbf{X}_k, \mathbf{y}_k) = \mathcal{N}(\mathbf{f}^*|\overline{\mathbf{f}}_k^*, \mathbf{\Sigma}_{\mathbf{f}^*, k})$

The likelihood is a product of Gaussian distributions $p(\mathbf{F}^*|\mathbf{f}^*) = \prod_{k=1}^{K} \mathcal{N}(\mathbf{f}_k^*|\mathbf{0}, \mathbf{\Sigma}_k)$ $\mathbf{\Sigma}_k = \mathbf{K}_k + \mathbf{\Sigma}_{\mathbf{f}^*, k} + \sigma^2 \mathbf{I}$

FAR BEYOND

Then, the likelihood function is

$$\begin{split} p(\mathbf{F}^*|\mathbf{f}^*) &= \prod_{k=1}^{K} p(\mathbf{f}_k^*|\mathbf{f}^*) \\ &= \prod_{k=1}^{K} \iint p(\mathbf{f}_k^*|\overline{\mathbf{f}}_k^*) p(\overline{\mathbf{f}}_k^*|\mathbf{v}_k, \mathbf{f}^*) p(\mathbf{v}_k|\mathbf{f}^*) d\overline{\mathbf{f}}_k^* d\mathbf{v}_k \end{split}$$

Considering the outputs from GPCs

$$q(\mathbf{f}^*|\mathbf{X}^*, \mathbf{X}_k, \mathbf{y}_k) = \mathcal{N}(\mathbf{f}^*|\overline{\mathbf{f}}_k^*, \mathbf{\Sigma}_{\mathbf{f}^*, k})$$

The likelihood is a product of Gaussian distributions $p(\mathbf{F}^*|\mathbf{f}^*) = \prod_{k=1}^{K} \mathcal{N}(\mathbf{f}_k^*|\mathbf{0}, \mathbf{\Sigma}_k)$ $\mathbf{\Sigma}_k = \mathbf{K}_k + \mathbf{\Sigma}_{\mathbf{f}^*,k} + \sigma^2 \mathbf{I}$

Then, the likelihood function is

$$p(\mathbf{F}^*|\mathbf{f}^*) = \prod_{k=1}^{K} p(\mathbf{f}_k^*|\mathbf{f}^*)$$
$$= \prod_{k=1}^{K} \iint p(\mathbf{f}_k^*|\overline{\mathbf{f}}_k^*) p(\overline{\mathbf{f}}_k^*|\mathbf{v}_k, \mathbf{f}^*) p(\mathbf{v}_k|\mathbf{f}^*) d\overline{\mathbf{f}}_k^* d\mathbf{v}_k$$

 K_k is the covariance matrix computed by evaluating the kernel of the kth GP.

Considering the outputs from GPCs

$$q(\mathbf{f}^*|\mathbf{X}^*, \mathbf{X}_k, \mathbf{y}_k) = \mathcal{N}(\mathbf{f}^*|\overline{\mathbf{f}}_k^*, \mathbf{\Sigma}_{\mathbf{f}^*, k})$$

The likelihood is a product of Gaussian distributions $p(\mathbf{F}^*|\mathbf{f}^*) = \prod_{k=1}^{K} \mathcal{N}(\mathbf{f}_k^*|\mathbf{0}, \mathbf{\Sigma}_k)$ $\mathbf{\Sigma}_k = \mathbf{K}_k + \mathbf{\Sigma}_{\mathbf{f}^*,k} + \sigma^2 \mathbf{I}$

٦

GPLVM for Ensemble Classification

Then, the likelihood function is

$$p(\mathbf{F}^*|\mathbf{f}^*) = \prod_{k=1}^{K} p(\mathbf{f}_k^*|\mathbf{f}^*)$$

$$= \prod_{k=1}^{K} \iint p(\mathbf{f}_k^*|\overline{\mathbf{f}}_k^*) p(\overline{\mathbf{f}}_k^*|\mathbf{v}_k, \mathbf{f}^*) p(\mathbf{v}_k|\mathbf{f}^*) d\overline{\mathbf{f}}_k^* d\mathbf{v}_k$$

 $\mathbf{K}_{\mathbf{k}}$ is the covariance matrix computed by evaluating the kernel of the kth GP.

If the prior $p(\mathbf{f}^*) = \prod_{n=1}^{n} \mathcal{N}(0, 1)$ i=1

Considering the outputs from GPCs

$$q(\mathbf{f}^*|\mathbf{X}^*, \mathbf{X}_k, \mathbf{y}_k) = \mathcal{N}(\mathbf{f}^*|\overline{\mathbf{f}}_k^*, \mathbf{\Sigma}_{\mathbf{f}^*, k})$$

The likelihood is a product of Gaussian distributions $p(\mathbf{F}^*|\mathbf{f}^*) = \prod \mathcal{N}(\mathbf{f}_k^*|\mathbf{0}, \mathbf{\Sigma}_k)$ $\boldsymbol{\Sigma}_{k} = \mathbf{K}_{k} + \boldsymbol{\Sigma}_{\mathbf{f}^{*},k} + \sigma^{2} \mathbf{I}$

FΔR

GPLVM for Ensemble Classification

Then, the likelihood function is

$$p(\mathbf{F}^*|\mathbf{f}^*) = \prod_{k=1}^{K} p(\mathbf{f}_k^*|\mathbf{f}^*)$$

$$= \prod_{k=1}^{K} \iint p(\mathbf{f}_k^*|\overline{\mathbf{f}}_k^*) p(\overline{\mathbf{f}}_k^*|\mathbf{v}_k, \mathbf{f}^*) p(\mathbf{v}_k|\mathbf{f}^*) d\overline{\mathbf{f}}_k^* d\mathbf{v}_k$$

Considering the outputs from GPCs

$$q(\mathbf{f}^*|\mathbf{X}^*, \mathbf{X}_k, \mathbf{y}_k) = \mathcal{N}(\mathbf{f}^*|\overline{\mathbf{f}}_k^*, \mathbf{\Sigma}_{\mathbf{f}^*, k})$$

The likelihood is a product of Gaussian distributions $p(\mathbf{F}^*|\mathbf{f}^*) = \prod \mathcal{N}(\mathbf{f}_k^*|\mathbf{0}, \mathbf{\Sigma}_k)$ $\mathbf{\Sigma}_{k} = \mathbf{K}_{k} + \mathbf{\Sigma}_{\mathbf{f}^{*},k} + \sigma^{2} \mathbf{I}$

 $\mathbf{K}_{\mathbf{k}}$ is the covariance matrix computed by evaluating the kernel of the kth GP.

If the prior $p(\mathbf{f}^*) = \prod^{n^*} \mathcal{N}(0, 1)$

the log of the posterior $\log p(\mathbf{f}^*|\mathbf{F}^*) \propto -\frac{(K+1)n^*}{2}\log(2\pi) - \frac{1}{2}\operatorname{tr}(\mathbf{f}^*\mathbf{f}^{*T})$ $-\frac{1}{2}\sum_{k=1}^{n^*} \left(\log |\Sigma_k| + \bar{\mathbf{f}}_k^{*T} \Sigma_k^{-1} \bar{\mathbf{f}}_k^* \right)$

FAR BEYOND

The MAP estimation is

 $\mathbf{\hat{f}}^*_{\text{MAP}} = \operatorname*{arg\,max}_{\mathbf{f}^*, \boldsymbol{\theta}} \log p(\mathbf{f}^* | \mathbf{F}^*)$

The probabilistic output is

 $p(\mathbf{y}^* = \mathbf{1} | \mathbf{X}^*, \mathbf{X}, \mathbf{y}) = \phi(\mathbf{\hat{f}}_{MAP}^*)$

The MAP estimation is

 $\mathbf{\hat{f}}^*_{\text{MAP}} = \operatorname*{arg\,max}_{\mathbf{f}^*, \boldsymbol{\theta}} \log p(\mathbf{f}^* | \mathbf{F}^*)$

The probabilistic output is

 $p(\mathbf{y}^* = \mathbf{1} | \mathbf{X}^*, \mathbf{X}, \mathbf{y}) = \phi(\mathbf{\hat{f}}^*_{MAP})$

We used the logistic function:

$$p(y_i|f_i) = \phi(y_i f_i) = \frac{1}{1 + \exp(-y_i f_i)}$$

The MAP estimation is

 $\mathbf{\hat{f}}^*_{\text{MAP}} = \operatorname*{arg\,max}_{\mathbf{f}^*, \boldsymbol{\theta}} \log p(\mathbf{f}^* | \mathbf{F}^*)$

The probabilistic output is

 $p(\mathbf{y}^* = \mathbf{1} | \mathbf{X}^*, \mathbf{X}, \mathbf{y}) = \phi(\mathbf{\hat{f}}_{MAP}^*)$

We used the logistic function:

$$p(y_i|f_i) = \phi(y_i f_i) = \frac{1}{1 + \exp(-y_i f_i)}$$

We chose the popular radial basis function (RBF) as the kernel of GP models.

$$k_{\text{RBF}}(\mathbf{x}, \mathbf{x}') = \sigma_f^2 \exp\left(-\frac{||\mathbf{x} - \mathbf{x}'||^2}{2l^2}\right)$$

And the automatic relevance determination (ARD) is applied for dimentionality reduction.

$$k_{\text{RBF-ARD}}(\mathbf{x}, \mathbf{x}') = \sigma_f^2 \exp\left(-\frac{1}{2}\sum_{d=1}^{D}\frac{(x_d - x'_d)^2}{l_d^2}\right)$$

Experiments

Synthetic Binary Classification

We generated a two-moon dataset centered at (2.5,3) and (-2.5,-3).

majority class: $n_{c_1} = 100$

minority class: $n_{c_2} = 10$

test set: $n^* = 2000$

of branches: K=10
of data in training subset: 20

Experiments

Synthetic Binary Classification

EnGPC-GPLVM: newly proposed method

GPC: only using a GPC-based model on imbalanced dataset

EnGPC-Avg: ensemble of GPCs whose outputs are averaged

Methods

EnGPC-Avg

EnGPC-GPLVM

GPC

Experiments

Test with real-world dataset

Based on the work in [1], we have a uterine contraction dataset annotated by experts. Training set: 233 positive samples 46 negative samples Test set: 41 samples per class

Methods	TPR	FPR	TNR	FNR	ACC	F-score
GPC	0.9012	0.3171	0.6829	0.1488	0.7171	0.7387
EnGPC-Avg	0.7561	0.1950	0.8049	0.2439	0.7805	0.7850
EnGPC-GPLVM	0.8049	0.1195	0.8293	0.1951	0.8171	0.8148

FAR BEYOND [1] L. Yang, C. Heiselman, J. G. Quirk and P. M. Djurić, "Identification of uterine contractions by an ensemble of Gaussian processes", in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process., ICASSP-2021

Conclusions

- We addressed the problem of binary classification with imbalanced dataset.
- An ensemble of Gaussian process classifiers with the Gaussian process latent variable model as a decision maker, is proposed.
- Experiments using both synthetic and real-world data show promise of the proposed approach.

Thank you very much for your attention!

Contacts

- *{liu.yang.2, petar.djuric}@stonybrook.edu
- +{cassandra.heiselman, j.gerald.quirk}@stonybrookmedicine.edu

IEEE ICASSP 2021₃₆