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Motivation

Picture sources:
https://www.helcim.com/article/overview-credit-card-transaction-types/
https://nano-magazine.com/news/2020/8/25/nanoengineered-biosensors-for-early-disease-detection
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Motivation

In our project, “Machine Learning Methods for
Revealing the Wellbeing of Fetuses”, we face the
severe imbalanced fetal heart rate (FHR) recordings.

Only 0.1% FHR tracings

are classified into
abnormal group.

T

Picture source:
https://www.stonybrook.edu/commcms/electrical/research/2021/djuric.php
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Problem Formulation

The training set contains a majority class and a minority class:
D=Cl UCQ Cl:{(Xz’:‘i_l)H:lv?:"'anl}
{(Xj’_1)|j:1,27.--7n62} ncl >> 7’LC2
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Problem Formulation

The training set contains a majority class and a minority class:
Rewritten: D = {X,y} X ¢ Rézxn y € R" N = Ne; + Ney
Similarly, the test set: D* = {X*’ y*} X* e Rdmxn* y* = R”*
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GPLVM for Ensemble Classification

One of the popular strategies to reduce the effect of performance distortion towards the
majority class in the training process is ensemble clearing.

Imbalanced training set D

Data Resampling

Balanced Balanced Balanced
training training . training
subset D1 subset D2 subset Dk

Test set D*
q(f*|X*, X, yi)

FAR
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GPLVM for Ensemble Classification

Imbalanced training set D

Data Resampling -
Balanced Balanced Balanced

training training training L. .

subset D1 subset D2 subset DK Training data resampling

we under-sampled the majority class
without replacement and

oversampled the minority class by applying
SMOTE*.

Test set D*
q(f*[X*, Xy, Y1)

Py =1|X"Xy)

*SMOTE: Synthetic Minority Over-sampling Technique
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GPLVM for Ensemble Classification

Imbalanced training set D

Data Resampling

Balanced Balanced Balanced
training training . training
subset D1 subset D2 subset Dk

Test set D*
q(f*[X*, Xy, Y1)

PO =1X"X,y)
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GPLVM for Ensemble Classification

For each branch
The posterior

(y&|f)p(f|Xx)

P
F1X . yi) =
p(f| X4k, y&) (e Xe)
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GPLVM for Ensemble Classification

For each branch

The posterior

(yr|f)p(f|X4)
p(yr|Xk)

The predictive distribution

P(E° X", X, y1) = / p(E°1X*, X, £)p(E| X, y1)dE

p(f1 Xk, yr) = B

FAR
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GPLVM for Ensemble Classification

For each branch

The posterior

p(yx|f)p(£1Xx)
p(yi|Xk)

The predictive distribution

P(E° X", X, y1) = / p(E°1X*, X, £)p(E| X, y1)dE

p(f1 Xk, yr) =

The Gaussian approximation

q(£*|X*, Xk, yi) = N (£, Se- 1)
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GPLVM for Ensemble Classification

Imbalanced training set D

Data Resampling

Balanced Balanced Balanced
training training . training
subset D1 subset D2 subset Dk

—)

Test set D* The Gaussian approximation
q(f*1X*, Xy Y1) S N
q(£*1X", Xk, yi) = N(£7|£5, Ze- 1)

l is the output of each Gaussian process classifier.

PO =11X",X,y)
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GPLVM for Ensemble Classification

Imbalanced training set D

Data Resampling Let F* = [fl*? fz*, cey f}'}] c R" *K bean
Balanced Balanced Balanced observation matrix

training training training and f* € R™ be an unknown true test latent
subset D1 subset D2 subset Dk vector

Test set D*
q(f*[X*, Xy, Y1)

PO =1X"X,y)
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GPLVM for Ensemble Classification

Imbalanced training set D

Data Resampling Let F* = [fl*? fz*, cey f}'}] c R" *K bean
Balanced Balanced Balanced observation matrix

training training training and f* € R™ be an unknown true test latent
subset D1 subset D2 subset Dk vector

We have a nonlinear mapping
F* = G(f*) + E

Test set D*

q(f*[X*, Xy, Y1)

—)
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GPLVM for Ensemble Classification

 Imbalanced training set D

Data Resampling Let F* = [fl*? fz*, cey ff*(] c R" *K bean
Balanced Balanced Balanced observation matrix

training training training and f* € R™ be an unknown true test latent
subset D1 subset D2 subset Dk vector

We have a nonlinear mapping
F* = G(f*) + E

Test set D* ) . .
a(F'1X* X0 v0) Function G(*) defines K independent GPs

‘ £ — gi(f") ~ GP(m(E"), K (", £))

FAR
BEYOND 16
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GPLVM for Ensemble Classification

 Imbalanced training set D

DataResampling  Let F* = [f/ f3,...,f5] € R” *X bean
Balanced Balanced Balanced observation matrix

training training training and f* € R™ be an unknown true test latent
subset D1 subset D2 subset Dk vector

We have a nonlinear mapping
F* = G(f*) + E

Test set D*

a(F'1X* X0 v0) Function G(*) defines K independent GPs
‘ £ = gi(t") ~ GP(m(f"), K (£, £))

E contains i.i.d. zero-mean Gaussian noises
p(y" = 1]X",X,y) e ~ N(0,0°)

FAR
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GPLVM for Ensemble Classification

Let F* = [f;.f5,...,f] e R" *X bean

observation matrix
and f* € R™ be an unknown true test latent
vector.

We have a nonlinear mapping
F* = G(f") + E
Function G(*) defines K independent GPs
fi = gr(f") ~ GP(m(f"), K(f", 7))

E contains i.i.d. zero-mean Gaussian noises

FAR
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GPLVM for Ensemble Classification

Let F* = [ff,f5,....f] e R" *K bean Then, the IikeIihood function is

observation matrix

and f* € R" be an unknown true test latent p(F7E7) = HP (£ 1£7)

vector.

We have a nonlinear mapping = H//p 716 ) p(£7 | Vi £5)p(vi | £)dE dvy,
F"=G(f")+E

Function G(*) defines K independent GPs
fp = gu(f") ~ GP(m(f"), K(f*, 7))
E contains i.i.d. zero-mean Gaussian noises

e ~ N(0,0%)

19

FAR
BEYOND




‘\\\‘ Stony Brook University

GPLVM for Ensemble Classification

Let F* = [ff,f5,....f] e R" *K bean Then, the IikeIihood function is
observation matrix
and f* € R" be an unknown true test latent p(F7E7) = HP (£ 1£7)
vector.
We have a nonlinear mapping = H f/ (L EOp(E Vi £)p(vil ) df dv
k=1
F* = G(f*) +E Considering the outputs from GPCs
g p

Function G(*) defines K independent GPs ¢(F7 X", X, yi) = N(E|fg, Be- )

£y = gr(f) ~ GP(m(f"), K(f", 7))
E contains i.i.d. zero-mean Gaussian noises

e ~ N(0,0%)

20
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GPLVM for Ensemble Classification

Let F* = [ff,f5,....f] e R" *K bean
observation matrix
and f* ¢ R™ be an unknown true test latent

vector.

We have a nonlinear mapping
F*=G(({")+E
Function G(*) defines K independent GPs
fy = gn(f”) ~ GP(m(f"), K(f*, 7))

E contains i.i.d. zero-mean Gaussian noises

e ~ N(0,0%)

FAR
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Then, the Iikelihood function is

p(F*|f) = Hp (£7|£)

] [ i E £ v,
k=1
Considering the outputs from GPCs
q(£|X*, X, yr) = N (£, Be- 1)
The likelihood is a product of Gaussian distributions
p(F|f*) = [ [ V(£ 10, =)

k=1
2 = Ki + g p + 071

21




‘\\\\ Stony Brook University

GPLVM for Ensemble Classification

Then, the likelihood function is

K
p(F*f7) = [ w(£i1£)
k=1

K
= H / f p(£: (6 p £ [V, £5) p(vi ) dE; dvy,
k=1

Considering the outputs from GPCs
q(f*[ X", X, yi) = N(f*m’f-, Ee k)
The likelihood is a product of Gaussian distributions
I
p(F[f%) = [ [ V(£i]0,2)

k=1
¥ =K+ B¢, +0°1
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GPLVM for Ensemble Classification

Then, the Iikelihood function is Kk is the covariance matrix computed
by evaluating the kernel of the kth GP.
p(F*[f*) = Hp (£7£%)

1] [ [ g E v £ v
k=1
Considering the outputs from GPCs
q(£ X", X, yi) = N(£*[E, Ze- 1)
The likelihood is a product of Gaussian distributions
p(F*|t%) = [[ V([0 =)

k=1
2 = Ki + B g + 071
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GPLVM for Ensemble Classification

Then, the Iikelihood function is Kk is the covariance matrix computed
by evaluating the kernel of the kth GP.
p(F*|f) = Hp (£7|£) )
If the prior  p(f*) = [[A(0,1)
11 [[ R v £l v, i
k=1

Considering the outputs from GPCs
q(£* X", X, yi) = N ([, Zee x)

The likelihood is a product of Gaussian distributions

p(F*|f*) = [ V(£:10, =)
k=1
=K, + Ef*’k + o |
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GPLVM for Ensemble Classification

Then, the Iikelihood function is Ky is the covariance matrix computed
by evaluating the kernel of the kth GP.
p(F*|f) = Hp (£7|£) )
If the prior  p(f*) = [[A(0,1)
11 [ [ R £l v =
k=1
Considering the outputs from GPCs the log of the posterior
* * * | ok K 1 § 1
q(£*1X*, Xp yr) = N(E*[E, Se- 1) log p(F*[F*) o —%log@ﬂ) — St T)
The likelihood is a product of Gaussian distributions L
" ) . log|X.| + F*Tzlf*)
p(E*[%) = [] M7 10, 5) 3 2 (loglel + BT,
k=1

2 = Ki + B g + 071
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BEYOND 25




Q\\\‘ Stony Brook University

GPLVM for Ensemble Classification

 Imbalanced training set D

the log of the posterior
(K +1)n*

Data Resampling

Balanced Balanced Balanced log p ( f* ‘ F* ) xX —
training training . training

subset D1 subset D2 subset Dk 1 n*
= (10g|2k| —|—f;TEI;1f,;")
=1

1
log(2m) — §tr(f*f*T)

Test set D*
q(f*[X*, Xy, Y1)

PO =11X",X,y)

FAR
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GPLVM for Ensemble Classification

 Imbalanced training set D

the log of the posterior
(K +1)n*

Data Resampling

Balanced Balanced Balanced log p ( f* ‘ F* ) xX —
training training . training

subset D1 subset D2 subset Dk n*

1 _ B
= (10g|2k| —|—f;TEI;1f,;")

i=1

1
log(2m) — §tr(f*f*T)

The MAP estimation is

Test set D* fuap = argmaxlog p(f*|F*)
q(F*1X*, Xic, Yi) £~.0

PO =11X",X,y)

FAR
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GPLVM for Ensemble Classification

 Imbalanced training set D

the log of the posterior
(K +1)n*

Data Resampling

Balanced Balanced Balanced log p ( f* ‘ F* ) xX —
training training . training

subset D1 subset D2 subset Dk

1
log(2m) — §tr(f*f*T)

#*

1 C £k —1lp*
1=1

The MAP estimation is

Test set D* fuap = argmaxlog p(f*|F*)
q(F*1X*, Xic, Yi) £~.0

The probabilistic output is

| p(y* = 1X%, X, y) = ¢(Eiap)
Py =1X°Xy)
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BEYOND 28
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GPLVM for Ensemble Classification

The MAP estimation is

£ p = arg max log p(f*|F*)
£.6

The probabilistic output is

p(y* =1|X*,X,y) = o(fiap)

FAR
BEYOND 29
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GPLVM for Ensemble Classification

The MAP estimation is

£ p = arg max log p(f*|F*)
£.6

The probabilistic output is
p(y" =1X", X y) = o(fyap)
We used the logistic function:

| 1
Pyl fi) = P(yifi) = 1+ exp(—yifi)

FAR
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GPLVM for Ensemble Classification

The MAP estimation is

£ p = arg max log p(f*|F*)
£.6

The probabilistic output is

p(y* =1|X*,X,y) = o(fiap)

We used the logistic function:

| 1
plyilfi) = oifi) = 7 oxp(—vi i)

FAR
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We chose the popular radial basis function (RBF) as
the kernel of GP models.

2 IIX—X’IIQ)

k x') = ole (— J
rprF(x, X) O FeXP TE

And the automatic relevance determination (ARD)
is applied for dimentionality reduction.

s 1< (xg — x4)*
krprarp(X,X') = ffjfffxl)( 5 Z ]—zd)
'd

d=1

31
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Experiments

Synthetic Binary Classification

We generated a two-moon dataset

centered at (2.5,3) and (-2.5,-3). R

majority class: N, = 100 .
_—___—"‘0_.5 s

minority class:  Tl., = 10

test set: n* = 2000 Test data \

®  Training data C1
® Training data C2
GPC

EGPC by Avg
EGPC by GPLVYM

-10 -5 0 5 10

# of branches: K=10
# of data in training subset: 20

FAR
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Experiments

Synthetic Binary Classification
EnGPC-GPLVM: newly proposed method

GPC: only using a GPC-based model on
imbalanced dataset

Test data
®  Training data C1
®  Training data C2

EnGPC-Avg: ensemble of GPCs whose outputs

) GPC
are averaged oo,
: 91 0 -‘5 0 5 Tb
Methods TPR FPR TNR FNR ACC  F-score
GPC 0.9802 0.2341 0.7659 0.0115 | 0.8702  0.8895
EnGPC-Avg 0.9408 0.0899  0.9190 0.0592 | 0.9200 0.9230
EnGPC-GPLVM | 0.9331 0.0638 0.9362 0.0659 | 0.9346 0.9347

FAR
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Experiments

Test with real-world dataset

10

Labeled by +1
Labeled by -1

Based on the work in [1], we have a uterine
contraction dataset annotated by experts.
Training set: 233 positive samples

46 negative samples

Count

Test set: 41 samples per class 2t
0 0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9
Probability of sample being positive (contraction)
Methods TPR FPR TNR FNR ACC  F-score
GPC 09012 0.3171 0.6829 0.1488 | 0.7171  0.7387
EnGPC-Avg 0.7561 0.1950 0.8049 0.2439 | 0.7805 0.7850
EnGPC-GPLVM | 0.8049 0.1195 0.8293 0.1951 | 0.8171 0.8148

[1] L. Yang, C. Heiselman, J. G. Quirk and P. M. Djuri¢, "Identification of uterine contractions by an ensemble of Gaussian

1 -
" in Proc. IEEE Int. Conf. Acoust., Speech, Signal P ., ICASSP-2021
BEYOND  Processes. inrroc nt. Conf. Acoust., Speech, Signal Process y
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Conclusions

*  We addressed the problem of binary classification with imbalanced
dataset.

*  An ensemble of Gaussian process classifiers with the Gaussian
process latent variable model as a decision maker, is proposed.

*  Experiments using both synthetic and real-world data show
promise of the proposed approach.
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Thank you very much for your attention!

Contacts
*{liu.yang.2, petar.djuric}@stonybrook.edu

t{cassandra.heiselman, j.gerald.quirk}@stonybrookmedicine.edu
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