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Motivation

Picture sources:
https://www.helcim.com/article/overview-credit-card-transaction-types/ 
https://nano-magazine.com/news/2020/8/25/nanoengineered-biosensors-for-early-disease-detection
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Motivation

Picture source:
https://www.stonybrook.edu/commcms/electrical/research/2021/djuric.php

In our project, “Machine Learning Methods for 

Revealing the Wellbeing of Fetuses”, we face the 

severe imbalanced fetal heart rate (FHR) recordings.

Only 0.1% FHR tracings 
are classified into 
abnormal group. 
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Problem Formulation
The training set contains a majority class and a minority class: 
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Problem Formulation
The training set contains a majority class and a minority class: 

Rewritten:

Similarly, the test set:  
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GPLVM for Ensemble Classification
One of the popular strategies to reduce the effect of performance distortion towards the 

majority class in the training process is ensemble clearing.
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GPLVM for Ensemble Classification

Training data resampling

we under-sampled the majority class 

without replacement and 

oversampled the minority class by applying 

SMOTE*.

*SMOTE: Synthetic Minority Over-sampling Technique
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GPLVM for Ensemble Classification
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GPLVM for Ensemble Classification
For each branch

The posterior
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GPLVM for Ensemble Classification
For each branch

The posterior

The predictive distribution
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GPLVM for Ensemble Classification
For each branch

The posterior

The predictive distribution

The Gaussian approximation 
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GPLVM for Ensemble Classification

The Gaussian approximation 

is the output of each Gaussian process classifier.
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GPLVM for Ensemble Classification

Let                                             be an 

observation matrix

and                be an unknown true test latent 

vector.
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GPLVM for Ensemble Classification

Then, the likelihood function is

Considering the outputs from GPCs

The likelihood is a product of Gaussian distributions

𝐊𝐤 is the covariance matrix computed 

by evaluating the kernel of the kth GP.
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GPLVM for Ensemble Classification

Then, the likelihood function is

Considering the outputs from GPCs

The likelihood is a product of Gaussian distributions

𝐊𝐤 is the covariance matrix computed 

by evaluating the kernel of the kth GP.

If the prior

the log of the posterior 



‘

26

GPLVM for Ensemble Classification
the log of the posterior 
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GPLVM for Ensemble Classification
the log of the posterior 

The MAP estimation is 
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GPLVM for Ensemble Classification
the log of the posterior 

The MAP estimation is 

The probabilistic output is 
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GPLVM for Ensemble Classification
The MAP estimation is 

The probabilistic output is 
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GPLVM for Ensemble Classification
The MAP estimation is 

The probabilistic output is 

We used the logistic function: 
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GPLVM for Ensemble Classification
The MAP estimation is 

The probabilistic output is 

We used the logistic function: 

We chose the popular radial basis function (RBF) as 

the kernel of GP models.

And the automatic relevance determination (ARD) 

is applied for dimentionality reduction.
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Experiments

Synthetic Binary Classification

We generated a two-moon dataset

centered at (2.5,3) and (-2.5,-3).

majority class: 

minority class:   

test set:  

# of branches: K=10

# of data in training subset: 20
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Experiments

Synthetic Binary Classification

EnGPC-GPLVM: newly proposed method

GPC: only using a GPC-based model on         

imbalanced dataset

EnGPC-Avg: ensemble of GPCs whose outputs    

are averaged
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Experiments

Test with real-world dataset

Based on the work in [1], we have a uterine 

contraction dataset annotated by experts.

Training set: 233 positive samples

46 negative samples

Test set:      41 samples per class

[1] L. Yang, C. Heiselman, J. G. Quirk and P. M. Djurić, "Identification of uterine contractions by an ensemble of Gaussian 

processes", in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process., ICASSP-2021



‘

35

Conclusions

• We addressed the problem of binary classification with imbalanced 

dataset.

• An ensemble of Gaussian process classifiers with the Gaussian 

process latent variable model as a decision maker, is proposed.

• Experiments using both synthetic and real-world data show 

promise of the proposed approach.
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Thank you very much for your attention!
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