

### **Class-imbalanced Classifiers using Ensembles of Gaussian Processes and Gaussian Process Latent Variable Models**

Liu Yang\*, Cassandra Heiselman<sup>†</sup>, J. Gerald Quirk<sup>†</sup>, Petar M. Djurić<sup>\*</sup>

\* Department of Electrical & Computer Engineering, Stony Brook University,

† Department of Obstetrics, Gynecology and Reproductive Medicine, Stony Brook University Hospital, Stony Brook, NY, 11794, USA

### **IEEE ICASSP 2021**





### **Overview**

**\***Motivation

**\***Problem Formulation

- \*Gaussian Process Latent Variable Model (GPLVM) for Ensemble Classification
- **\***Experiments
- **\***Conclusions





### **Motivation**





Picture sources: https://www.helcim.com/article/overview-credit-card-transaction-types/ https://nano-magazine.com/news/2020/8/25/nanoengineered-biosensors-for-early-disease-detection

#### FAR BEYOND



### Motivation

In our project, "Machine Learning Methods for Revealing the Wellbeing of Fetuses", we face the severe imbalanced fetal heart rate (FHR) recordings.

> Only 0.1% FHR tracings are classified into abnormal group.





Picture source: https://www.stonybrook.edu/commcms/electrical/research/2021/djuric.php





### **Problem Formulation**

The training set contains a majority class and a minority class:

a

 $\mathcal{D} = \mathcal{C}_1 \cup \mathcal{C}_2 \qquad \mathcal{C}_1 = \{ (\mathbf{x}_i, +1) | i = 1, 2, \dots, n_{c_1} \} \\ \mathcal{C}_2 = \{ (\mathbf{x}_j, -1) | j = 1, 2, \dots, n_{c_2} \} \qquad n_{c_1} \gg n_{c_2}$ 





### **Problem Formulation**

The training set contains a majority class and a minority class: Rewritten:  $\mathcal{D} = \{\mathbf{X}, \mathbf{y}\}$   $\mathbf{X} \in \mathbb{R}^{dx \times n}$   $\mathbf{y} \in \mathbb{R}^n$   $n = n_{c_1} + n_{c_2}$ Similarly, the test set:  $\mathcal{D}^* = \{\mathbf{X}^*, \mathbf{y}^*\}$   $\mathbf{X}^* \in \mathbb{R}^{dx \times n^*}$   $\mathbf{y}^* \in \mathbb{R}^{n^*}$ 



а







FAR

### **GPLVM** for Ensemble Classification

One of the popular strategies to reduce the effect of performance distortion towards the majority class in the training process is ensemble clearing.





FAR

### **GPLVM for Ensemble Classification**



**Training data resampling** we under-sampled the majority class without replacement and oversampled the minority class by applying SMOTE\*.

#### \*SMOTE: Synthetic Minority Over-sampling Technique



8











For each branch

The posterior

$$p(\mathbf{f}|\mathbf{X}_k, \mathbf{y}_k) = \frac{p(\mathbf{y}_k|\mathbf{f})p(\mathbf{f}|\mathbf{X}_k)}{p(\mathbf{y}_k|\mathbf{X}_k)}$$







For each branch

The posterior

$$p(\mathbf{f}|\mathbf{X}_k, \mathbf{y}_k) = \frac{p(\mathbf{y}_k|\mathbf{f})p(\mathbf{f}|\mathbf{X}_k)}{p(\mathbf{y}_k|\mathbf{X}_k)}$$

The predictive distribution

$$p(\mathbf{f}^*|\mathbf{X}^*, \mathbf{X}_k, \mathbf{y}_k) = \int p(\mathbf{f}^*|\mathbf{X}^*, \mathbf{X}_k, \mathbf{f}) p(\mathbf{f}|\mathbf{X}_k, \mathbf{y}_k) d\mathbf{f}$$







For each branch

The posterior

$$p(\mathbf{f}|\mathbf{X}_k, \mathbf{y}_k) = \frac{p(\mathbf{y}_k|\mathbf{f})p(\mathbf{f}|\mathbf{X}_k)}{p(\mathbf{y}_k|\mathbf{X}_k)}$$

The predictive distribution

$$p(\mathbf{f}^*|\mathbf{X}^*, \mathbf{X}_k, \mathbf{y}_k) = \int p(\mathbf{f}^*|\mathbf{X}^*, \mathbf{X}_k, \mathbf{f}) p(\mathbf{f}|\mathbf{X}_k, \mathbf{y}_k) d\mathbf{f}$$

The Gaussian approximation

$$q(\mathbf{f}^*|\mathbf{X}^*, \mathbf{X}_k, \mathbf{y}_k) = \mathcal{N}(\mathbf{f}^*|\overline{\mathbf{f}}_k^*, \mathbf{\Sigma}_{\mathbf{f}^*, k})$$







#### FAR BEYOND





#### FAR BEYOND



Let  $\mathbf{F}^* = [\mathbf{f}_1^*, \mathbf{f}_2^*, \dots, \mathbf{f}_K^*] \in \mathbb{R}^{n^* \times K}$  be an observation matrix and  $\mathbf{f}^* \in \mathbb{R}^{n^*}$  be an unknown true test latent vector.

We have a nonlinear mapping

 $\mathbf{F}^* = \mathbf{G}(\mathbf{f}^*) + \mathbf{E}$ 

Function G(•) defines K independent GPs  $\mathbf{f}_k^* = \mathbf{g}_k(\mathbf{f}^*) \sim \mathcal{GP}(\mathbf{m}(\mathbf{f}^*), \mathbf{K}(\mathbf{f}^*, \mathbf{f}^*))$ E contains i.i.d. zero-mean Gaussian noises

 $\epsilon \sim \mathcal{N}(0,\sigma^2)$ 





Let  $\mathbf{F}^* = [\mathbf{f}_1^*, \mathbf{f}_2^*, \dots, \mathbf{f}_K^*] \in \mathbb{R}^{n^* \times K}$  be an observation matrix and  $\mathbf{f}^* \in \mathbb{R}^{n^*}$  be an unknown true test latent vector.

We have a nonlinear mapping

 $\mathbf{F}^* = \mathbf{G}(\mathbf{f}^*) + \mathbf{E}$ 

Function G(•) defines K independent GPs  $\mathbf{f}_k^* = \mathbf{g}_k(\mathbf{f}^*) \sim \mathcal{GP}(\mathbf{m}(\mathbf{f}^*), \mathbf{K}(\mathbf{f}^*, \mathbf{f}^*))$ 

E contains i.i.d. zero-mean Gaussian noises  $\epsilon \sim \mathcal{N}(0,\sigma^2)$ 

# Then, the likelihood function is $p(\mathbf{F}^*|\mathbf{f}^*) = \prod_{k=1}^{K} p(\mathbf{f}_k^*|\mathbf{f}^*)$ $= \prod_{k=1}^{K} \iint p(\mathbf{f}_k^*|\overline{\mathbf{f}}_k^*) p(\overline{\mathbf{f}}_k^*|\mathbf{v}_k, \mathbf{f}^*) p(\mathbf{v}_k|\mathbf{f}^*) d\overline{\mathbf{f}}_k^* d\mathbf{v}_k$

#### FAR BEYOND



Let  $\mathbf{F}^* = [\mathbf{f}_1^*, \mathbf{f}_2^*, \dots, \mathbf{f}_K^*] \in \mathbb{R}^{n^* \times K}$  be an observation matrix and  $\mathbf{f}^* \in \mathbb{R}^{n^*}$  be an unknown true test latent vector.

We have a nonlinear mapping

 $\mathbf{F}^* = \mathbf{G}(\mathbf{f}^*) + \mathbf{E}$ 

Function G(•) defines K independent GPs  $\mathbf{f}_k^* = \mathbf{g}_k(\mathbf{f}^*) \sim \mathcal{GP}(\mathbf{m}(\mathbf{f}^*), \mathbf{K}(\mathbf{f}^*, \mathbf{f}^*))$ 

E contains i.i.d. zero-mean Gaussian noises  $\epsilon \sim \mathcal{N}(0,\sigma^2)$ 

### Then. the likelihood function is

$$\begin{split} p(\mathbf{F}^*|\mathbf{f}^*) &= \prod_{k=1}^{K} p(\mathbf{f}_k^*|\mathbf{f}^*) \\ &= \prod_{k=1}^{K} \iint p(\mathbf{f}_k^*|\overline{\mathbf{f}}_k^*) p(\overline{\mathbf{f}}_k^*|\mathbf{v}_k, \mathbf{f}^*) p(\mathbf{v}_k|\mathbf{f}^*) d\overline{\mathbf{f}}_k^* d\mathbf{v}_k \end{split}$$

Considering the outputs from GPCs  $q(\mathbf{f}^*|\mathbf{X}^*, \mathbf{X}_k, \mathbf{y}_k) = \mathcal{N}(\mathbf{f}^*|\overline{\mathbf{f}}_k^*, \mathbf{\Sigma}_{\mathbf{f}^*, k})$ 





Let  $\mathbf{F}^* = [\mathbf{f}_1^*, \mathbf{f}_2^*, \dots, \mathbf{f}_K^*] \in \mathbb{R}^{n^* \times K}$  be an observation matrix and  $\mathbf{f}^* \in \mathbb{R}^{n^*}$  be an unknown true test latent vector.

We have a nonlinear mapping

 $\mathbf{F}^* = \mathbf{G}(\mathbf{f}^*) + \mathbf{E}$ 

Function G(•) defines K independent GPs  $\mathbf{f}_k^* = \mathbf{g}_k(\mathbf{f}^*) \sim \mathcal{GP}(\mathbf{m}(\mathbf{f}^*), \mathbf{K}(\mathbf{f}^*, \mathbf{f}^*))$ 

E contains i.i.d. zero-mean Gaussian noises  $\epsilon \sim \mathcal{N}(0,\sigma^2)$ 

Then, the likelihood function is

$$\begin{split} p(\mathbf{F}^*|\mathbf{f}^*) &= \prod_{k=1}^{K} p(\mathbf{f}_k^*|\mathbf{f}^*) \\ &= \prod_{k=1}^{K} \iint p(\mathbf{f}_k^*|\overline{\mathbf{f}}_k^*) p(\overline{\mathbf{f}}_k^*|\mathbf{v}_k, \mathbf{f}^*) p(\mathbf{v}_k|\mathbf{f}^*) d\overline{\mathbf{f}}_k^* d\mathbf{v}_k \end{split}$$

Considering the outputs from GPCs  $q(\mathbf{f}^*|\mathbf{X}^*, \mathbf{X}_k, \mathbf{y}_k) = \mathcal{N}(\mathbf{f}^*|\overline{\mathbf{f}}_k^*, \mathbf{\Sigma}_{\mathbf{f}^*, k})$ 

The likelihood is a product of Gaussian distributions  $p(\mathbf{F}^*|\mathbf{f}^*) = \prod_{k=1}^{K} \mathcal{N}(\mathbf{f}_k^*|\mathbf{0}, \mathbf{\Sigma}_k)$   $\mathbf{\Sigma}_k = \mathbf{K}_k + \mathbf{\Sigma}_{\mathbf{f}^*, k} + \sigma^2 \mathbf{I}$ 

#### FAR BEYOND



Then, the likelihood function is

$$\begin{split} p(\mathbf{F}^*|\mathbf{f}^*) &= \prod_{k=1}^{K} p(\mathbf{f}_k^*|\mathbf{f}^*) \\ &= \prod_{k=1}^{K} \iint p(\mathbf{f}_k^*|\overline{\mathbf{f}}_k^*) p(\overline{\mathbf{f}}_k^*|\mathbf{v}_k, \mathbf{f}^*) p(\mathbf{v}_k|\mathbf{f}^*) d\overline{\mathbf{f}}_k^* d\mathbf{v}_k \end{split}$$

Considering the outputs from GPCs

$$q(\mathbf{f}^*|\mathbf{X}^*, \mathbf{X}_k, \mathbf{y}_k) = \mathcal{N}(\mathbf{f}^*|\overline{\mathbf{f}}_k^*, \mathbf{\Sigma}_{\mathbf{f}^*, k})$$

The likelihood is a product of Gaussian distributions  $p(\mathbf{F}^*|\mathbf{f}^*) = \prod_{k=1}^{K} \mathcal{N}(\mathbf{f}_k^*|\mathbf{0}, \mathbf{\Sigma}_k)$   $\mathbf{\Sigma}_k = \mathbf{K}_k + \mathbf{\Sigma}_{\mathbf{f}^*,k} + \sigma^2 \mathbf{I}$ 





Then, the likelihood function is

$$p(\mathbf{F}^*|\mathbf{f}^*) = \prod_{k=1}^{K} p(\mathbf{f}_k^*|\mathbf{f}^*)$$
$$= \prod_{k=1}^{K} \iint p(\mathbf{f}_k^*|\overline{\mathbf{f}}_k^*) p(\overline{\mathbf{f}}_k^*|\mathbf{v}_k, \mathbf{f}^*) p(\mathbf{v}_k|\mathbf{f}^*) d\overline{\mathbf{f}}_k^* d\mathbf{v}_k$$

 $K_k$  is the covariance matrix computed by evaluating the kernel of the kth GP.

Considering the outputs from GPCs

$$q(\mathbf{f}^*|\mathbf{X}^*, \mathbf{X}_k, \mathbf{y}_k) = \mathcal{N}(\mathbf{f}^*|\overline{\mathbf{f}}_k^*, \mathbf{\Sigma}_{\mathbf{f}^*, k})$$

The likelihood is a product of Gaussian distributions  $p(\mathbf{F}^*|\mathbf{f}^*) = \prod_{k=1}^{K} \mathcal{N}(\mathbf{f}_k^*|\mathbf{0}, \mathbf{\Sigma}_k)$   $\mathbf{\Sigma}_k = \mathbf{K}_k + \mathbf{\Sigma}_{\mathbf{f}^*,k} + \sigma^2 \mathbf{I}$ 





٦

### **GPLVM** for Ensemble Classification

Then, the likelihood function is  

$$p(\mathbf{F}^*|\mathbf{f}^*) = \prod_{k=1}^{K} p(\mathbf{f}_k^*|\mathbf{f}^*)$$

$$= \prod_{k=1}^{K} \iint p(\mathbf{f}_k^*|\overline{\mathbf{f}}_k^*) p(\overline{\mathbf{f}}_k^*|\mathbf{v}_k, \mathbf{f}^*) p(\mathbf{v}_k|\mathbf{f}^*) d\overline{\mathbf{f}}_k^* d\mathbf{v}_k$$

 $\mathbf{K}_{\mathbf{k}}$  is the covariance matrix computed by evaluating the kernel of the kth GP.

If the prior  $p(\mathbf{f}^*) = \prod_{n=1}^{n} \mathcal{N}(0, 1)$ i=1

Considering the outputs from GPCs

$$q(\mathbf{f}^*|\mathbf{X}^*, \mathbf{X}_k, \mathbf{y}_k) = \mathcal{N}(\mathbf{f}^*|\overline{\mathbf{f}}_k^*, \mathbf{\Sigma}_{\mathbf{f}^*, k})$$

The likelihood is a product of Gaussian distributions  $p(\mathbf{F}^*|\mathbf{f}^*) = \prod \mathcal{N}(\mathbf{f}_k^*|\mathbf{0}, \mathbf{\Sigma}_k)$  $\boldsymbol{\Sigma}_{k} = \mathbf{K}_{k} + \boldsymbol{\Sigma}_{\mathbf{f}^{*},k} + \sigma^{2} \mathbf{I}$ 





FΔR

### **GPLVM** for Ensemble Classification

Then, the likelihood function is  

$$p(\mathbf{F}^*|\mathbf{f}^*) = \prod_{k=1}^{K} p(\mathbf{f}_k^*|\mathbf{f}^*)$$

$$= \prod_{k=1}^{K} \iint p(\mathbf{f}_k^*|\overline{\mathbf{f}}_k^*) p(\overline{\mathbf{f}}_k^*|\mathbf{v}_k, \mathbf{f}^*) p(\mathbf{v}_k|\mathbf{f}^*) d\overline{\mathbf{f}}_k^* d\mathbf{v}_k$$

Considering the outputs from GPCs

$$q(\mathbf{f}^*|\mathbf{X}^*, \mathbf{X}_k, \mathbf{y}_k) = \mathcal{N}(\mathbf{f}^*|\overline{\mathbf{f}}_k^*, \mathbf{\Sigma}_{\mathbf{f}^*, k})$$

The likelihood is a product of Gaussian distributions  $p(\mathbf{F}^*|\mathbf{f}^*) = \prod \mathcal{N}(\mathbf{f}_k^*|\mathbf{0}, \mathbf{\Sigma}_k)$  $\mathbf{\Sigma}_{k} = \mathbf{K}_{k} + \mathbf{\Sigma}_{\mathbf{f}^{*},k} + \sigma^{2} \mathbf{I}$ 

 $\mathbf{K}_{\mathbf{k}}$  is the covariance matrix computed by evaluating the kernel of the kth GP.

If the prior  $p(\mathbf{f}^*) = \prod^{n^*} \mathcal{N}(0, 1)$ 

the log of the posterior  $\log p(\mathbf{f}^*|\mathbf{F}^*) \propto -\frac{(K+1)n^*}{2}\log(2\pi) - \frac{1}{2}\operatorname{tr}(\mathbf{f}^*\mathbf{f}^{*T})$  $-\frac{1}{2}\sum_{k=1}^{n^*} \left( \log |\Sigma_k| + \bar{\mathbf{f}}_k^{*T} \Sigma_k^{-1} \bar{\mathbf{f}}_k^* \right)$ 











#### FAR BEYOND









The MAP estimation is

 $\mathbf{\hat{f}}^*_{\text{MAP}} = \operatorname*{arg\,max}_{\mathbf{f}^*, \boldsymbol{\theta}} \log p(\mathbf{f}^* | \mathbf{F}^*)$ 

The probabilistic output is

 $p(\mathbf{y}^* = \mathbf{1} | \mathbf{X}^*, \mathbf{X}, \mathbf{y}) = \phi(\mathbf{\hat{f}}_{MAP}^*)$ 





The MAP estimation is

 $\mathbf{\hat{f}}^*_{\text{MAP}} = \operatorname*{arg\,max}_{\mathbf{f}^*, \boldsymbol{\theta}} \log p(\mathbf{f}^* | \mathbf{F}^*)$ 

The probabilistic output is

 $p(\mathbf{y}^* = \mathbf{1} | \mathbf{X}^*, \mathbf{X}, \mathbf{y}) = \phi(\mathbf{\hat{f}}^*_{MAP})$ 

We used the logistic function:

$$p(y_i|f_i) = \phi(y_i f_i) = \frac{1}{1 + \exp(-y_i f_i)}$$





The MAP estimation is

 $\mathbf{\hat{f}}^*_{\text{MAP}} = \operatorname*{arg\,max}_{\mathbf{f}^*, \boldsymbol{\theta}} \log p(\mathbf{f}^* | \mathbf{F}^*)$ 

The probabilistic output is

 $p(\mathbf{y}^* = \mathbf{1} | \mathbf{X}^*, \mathbf{X}, \mathbf{y}) = \phi(\mathbf{\hat{f}}_{MAP}^*)$ 

We used the logistic function:

$$p(y_i|f_i) = \phi(y_i f_i) = \frac{1}{1 + \exp(-y_i f_i)}$$

We chose the popular radial basis function (RBF) as the kernel of GP models.

$$k_{\text{RBF}}(\mathbf{x}, \mathbf{x}') = \sigma_f^2 \exp\left(-\frac{||\mathbf{x} - \mathbf{x}'||^2}{2l^2}\right)$$

And the automatic relevance determination (ARD) is applied for dimentionality reduction.

$$k_{\text{RBF-ARD}}(\mathbf{x}, \mathbf{x}') = \sigma_f^2 \exp\left(-\frac{1}{2}\sum_{d=1}^{D}\frac{(x_d - x'_d)^2}{l_d^2}\right)$$





### **Experiments**

Synthetic Binary Classification

We generated a two-moon dataset centered at (2.5,3) and (-2.5,-3).

majority class:  $n_{c_1} = 100$ 

minority class:  $n_{c_2} = 10$ 

test set:  $n^* = 2000$ 

# of branches: K=10
# of data in training subset: 20







### **Experiments**

Synthetic Binary Classification

EnGPC-GPLVM: newly proposed method

GPC: only using a GPC-based model on imbalanced dataset

EnGPC-Avg: ensemble of GPCs whose outputs are averaged

Methods

EnGPC-Avg

EnGPC-GPLVM

GPC







### **Experiments**

Test with real-world dataset

Based on the work in [1], we have a uterine contraction dataset annotated by experts. Training set: 233 positive samples 46 negative samples Test set: 41 samples per class



| Methods     | TPR    | FPR    | TNR    | FNR    | ACC    | F-score |
|-------------|--------|--------|--------|--------|--------|---------|
| GPC         | 0.9012 | 0.3171 | 0.6829 | 0.1488 | 0.7171 | 0.7387  |
| EnGPC-Avg   | 0.7561 | 0.1950 | 0.8049 | 0.2439 | 0.7805 | 0.7850  |
| EnGPC-GPLVM | 0.8049 | 0.1195 | 0.8293 | 0.1951 | 0.8171 | 0.8148  |

FAR BEYOND [1] L. Yang, C. Heiselman, J. G. Quirk and P. M. Djurić, "Identification of uterine contractions by an ensemble of Gaussian processes", in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process., ICASSP-2021



### Conclusions

- We addressed the problem of binary classification with imbalanced dataset.
- An ensemble of Gaussian process classifiers with the Gaussian process latent variable model as a decision maker, is proposed.
- Experiments using both synthetic and real-world data show promise of the proposed approach.





## Thank you very much for your attention!

#### Contacts

- \*{liu.yang.2, petar.djuric}@stonybrook.edu
- +{cassandra.heiselman, j.gerald.quirk}@stonybrookmedicine.edu



IEEE ICASSP 2021<sub>36</sub>