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Parallel WaveGAN (PWG)

Distillation-free
Distillation-free training combining 
multi-resolution STFT loss and 
adversarial loss.

High-quality
Competitive perceptual quality to the 
conventional Parallel WaveNet

Fast
Training and inference speed is much 
faster than Parallel WaveNet.

Limitation
A single discriminator may not be 
sufficient to discriminate complex 
nature of speech.
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Overview of our research

Problem
Insufficient capability of the conventional PWG’s discriminator

Proposed method
Voicing-aware discriminator: separate discriminators for voiced and 
unvoiced segments

Results
Significant performance improvements 
for speaker-independent modeling.

NOTE: MOS in the table was averaged among four speakers.
See per-speaker MOS in our paper.
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Voiced / unvoiced sounds

Voiced sounds
Quasi-periodic (mostly characterized by fundamental frequency and its harmonics)

Unvoiced sounds
Non-periodic (contains noise)
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Details of voicing-aware discriminator

Architecture
• 1-D CNNs 
• Conditional discriminator [2]

Designs for voiced/unvoiced 
discriminators
• Voiced: dilated convolution to increase 

receptive field
• Unvoiced: non-dilated convolution
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[2] T. Miyato, et al., “cGANs with projection discriminator,” in Proc. ICLR, 2018. 
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*Conv1D: non-dilated conv. for 𝑫𝒗



• Least squares GAN (LSGAN [3]) formulation 
• Multi-resolution STFT loss (𝐿!"_$%&%) is used 

Training objectives

min
'
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Auxiliary loss:
Learn from data

Adversarial loss:
Learn from voicing-aware discriminators

𝑥, 𝑧, ℎ: waveform, noise, and acoustic features
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Experiments

1. Experiments on discriminator design choices in analysis-by-synthesis
2. Text-to-speech (TTS)

– FastSpeech 2 [4] is used as an acoustic model.

[4] Ren et al., “FastSpeech 2: Fast and High-Quality End-to-End Text to Speech,” in Proc. ICLR, 2021. 
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Experimental setup

Data & features

Baseline vocoders
WaveNet [6] 
PWG with different discriminator setups (NOTE: generator configurations were all the same)

Listening tests
Mean-option score (MOS) listening test on quality and naturalness
Seventeen native Japanese speakers / 20 random utterances for each method

Recordings Size (training / validation / test)

Two male (M1, M2) and two female (F1, F2) Japanese speakers 
24 kHz /16 bit

4,500 (about. 5.5 hours), 250, 250 (per speaker)

Auxiliary features Frame shift

79-dim ITFTE vocoder parameters [5] (LSFs, log F0, energy, V/UV, REW, SEW) 5 ms

[5] E. Song, et al., “Effective spectral and excitation modeling techniques for LSTM-RNN based speech synthesis systems,” IEEE/ACM TASLP, 2017.
[6] W. Ping, et al., “ClariNet: Parallel wave generation in end-to-end text-to-speech,” in Proc. ICLR, 2019.
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MOS test results on analysis-by-synthesis

S2 vs. S3
Discriminator conditioning significantly improved perceptual quality

S2 vs. (S4, S5, S6)
(Intentionally) misconfigured discriminators degraded performance

S2 vs. S7
Property designed voicing-aware discriminator worked best.
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NOTE: MOS in the table was averaged among four speakers. See per-speaker MOS in our paper.
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Comparison of spectrograms

ReferencePWG PWG-V/UV-D

R. Yamamoto, et al., "Parallel waveform synthesis based on generative adversarial networks with voicing-aware conditional discriminators," in Proc. ICASSP, 2021.

PWG-V/UV-D can produce spectral harmonics more accurately. 



MOS listening test results on text-to-speech 
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NOTE: MOS in the figure was averaged among four speakers. See per-speaker MOS in our paper.
NOTE: WaveNet could be improved by noise-shaping technique.
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Summary

Goal
Better perceptual quality by improving PWG’s discriminator

Proposed method
Voicing-aware discriminator: separate discriminators for voiced and 
unvoiced segments.

Results
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