

Parallel waveform synthesis based on generative adversarial networks with voicing-aware conditional discriminators

Ryuichi Yamamoto¹, Eunwoo Song², Min-Jae Hwang³, Jae-min Kim²
¹LINE Corp., Tokyo, Japan
²NAVER Corp., Seongnam, Korea
³Search Solutions Inc., Seongnam, Korea

Parallel WaveGAN (PWG)

Distillation-free

Distillation-free training combining multi-resolution STFT loss and adversarial loss.

High-quality

Competitive perceptual quality to the conventional Parallel WaveNet

Fast

Training and inference speed is much faster than Parallel WaveNet.

Limitation

A single discriminator may not be sufficient to discriminate complex nature of speech.

Overview of our research

Problem

Insufficient capability of the conventional PWG's discriminator

Proposed method

Voicing-aware discriminator: separate discriminators for voiced and unvoiced segments

Results

Significant performance improvements for speaker-independent modeling.

Model	MOS
PWG	3.70 ± 0.05
PWG-V/UV-D (proposed)	4.23 ± 0.05
Recordings	4.64 ± 0.04

NOTE: MOS in the table was averaged among four speakers. See per-speaker MOS in our paper.

Voiced / unvoiced sounds

Voiced sounds

Quasi-periodic (mostly characterized by fundamental frequency and its harmonics)

Unvoiced sounds

Non-periodic (contains noise)

Overview of PWG's discriminators

[1] P. Isola, et al., "Image-to-image translation with conditional adversarial networks." in Proc. CVPR, 2017.

Overview of PWG's discriminators

[1] P. Isola, et al., "Image-to-image translation with conditional adversarial networks." in Proc. CVPR, 2017.

Overview of PWG's discriminators

[1] P. Isola, et al., "Image-to-image translation with conditional adversarial networks." in Proc. CVPR, 2017.

Details of voicing-aware discriminator

Architecture

- 1-D CNNs
- Conditional discriminator [2]

Designs for voiced/unvoiced discriminators

- Voiced: dilated convolution to increase receptive field
- Unvoiced: non-dilated convolution

Discriminator	Dilation factors	Receptive field
D^{v}	[1, 2, 4, 8, 16, 32]	127
D^{uv}	[1, 1, 1, 1, 1, 1]	13

[2] T. Miyato, et al., "cGANs with projection discriminator," in Proc. ICLR, 2018.

Training objectives

- Least squares GAN (LSGAN [3]) formulation
- Multi-resolution STFT loss (L_{mr_stft}) is used

$$\min_{D} \mathbb{E}_{x,h} \left[[(1 - D(x,h))^2] + \mathbb{E}_{z,h} [D(G(z,h),h)^2], \forall D \in \{D^{\nu}, D^{u\nu}\} \right]$$

$$\min_{G} \mathbb{E}_{x,z,h} [L_{mr_stft}(x,G(z,h)] + \frac{1}{2} \lambda_{adv} \mathbb{E}_{z,h} \left[\sum_{D \in \{D^{\nu},D^{u\nu}\}} (1 - D(G(z,h),h))^2 \right]$$

Auxiliary loss: Learn from data Adversarial loss: Learn from voicing-aware discriminators

x, *z*, *h*: waveform, noise, and acoustic features

[3] M. Xudong, et al. "Least squares generative adversarial networks." in Proc. ICCV, 2017.

Experiments

- 1. Experiments on discriminator design choices in analysis-by-synthesis
- 2. Text-to-speech (TTS)
 - FastSpeech 2 [4] is used as an acoustic model.

Experimental setup

Data & features

Recordings	Size (training / validation / test)		
Two male (M1, M2) and two female (F1, F2) Japanese speakers 24 kHz /16 bit	4,500 (about. 5.5 hours), 250, 250 (per speaker)		
Auxiliary features		Frame shift	
79-dim ITFTE vocoder parameters [5] (LSFs, log F0, energy, V/UV, REW, SEW)		5 ms	

Baseline vocoders

WaveNet [6]

PWG with different discriminator setups (NOTE: generator configurations were all the same)

Listening tests

Mean-option score (MOS) listening test on quality and naturalness Seventeen native Japanese speakers / 20 random utterances for each method

[5] E. Song, *et al.*, "Effective spectral and excitation modeling techniques for LSTM-RNN based speech synthesis systems," *IEEE/ACM TASLP*, 2017.
[6] W. Ping, *et al.*, "ClariNet: Parallel wave generation in end-to-end text-to-speech," in *Proc. ICLR*, 2019.

MOS test results on analysis-by-synthesis

System	Model	Voiced segments	Unvoiced segments	Discriminator conditioning	MOS	
S1	WaveNet	-	-	3 -	$3.48 {\pm} 0.06$	
S2	PWG	-	-	-	3.59 ± 0.06	+ 0.29
S 3	PWG-cGAN-D	-	-	Yes	© 3.97±0.05 -	+ 0.36
S 4	PWG-V/UV-D	D^{v}	D^{v}	Yes	⊗ 3.50±0.06	
S 5	PWG-V/UV-D	D^{uv}	D^{v}	Yes	⊗ 3.46±0.05	+ 0.40
S 6	PWG-V/UV-D	D^{uv}	D^{uv}	Yes	⊗ 3.64±0.05	
S7	PWG-V/UV-D (proposed)	D^{v}	D^{uv}	Yes	© 4.07±0.05 -	
R1	Recordings	-	-	-	$4.64 {\pm} 0.04$	

NOTE: MOS in the table was averaged among four speakers. See per-speaker MOS in our paper.

: Misconfigured

S2 vs. S3

Discriminator conditioning significantly improved perceptual quality **S2 vs. (S4, S5, S6)**

(Intentionally) misconfigured discriminators degraded performance

S2 vs. S7

Property designed voicing-aware discriminator worked best.

Comparison of spectrograms

PWG-V/UV-D can produce spectral harmonics more accurately.

MOS listening test results on text-to-speech

Summary

Goal

Better perceptual quality by improving PWG's discriminator

Proposed method

Voicing-aware discriminator: separate discriminators for voiced and unvoiced segments.

Results

nce PWG PWG-V/UV-D

R. Yamamoto, et al., "Parallel waveform synthesis based on generative adversarial networks with voicing-aware conditional discriminators," in Proc. ICASSP, 2021.