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● Goal: accelerate the solution of sparse regression problems with the 
generalized Kullback-Leibler (KL) divergence → safe screening.

● Maximum likelihood estimation with a Poisson observation model.

● Applications:

– Sparse NMF

– Count data

● Text processing: word count

● Recommendation: view / listening count

– Medical imaging (Positron emission tomography)

Motivations
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Safe Screening: state-of-the-art

● Initially proposed for the Lasso problem [El Ghaoui et al. 2012]

● Extensions:

– Different regularizations
● Group-lasso [El Ghaoui et al. 2012], Fused Lasso [Wang et al. 2015],  

Elastic Net [Fercoq et al. 2015], Sparse-Group Lasso [Wang et al. 2019] …

– Different data-fidelity terms
● Sparse Logistic regression [Wang et al. 2014]

– Different constraint sets
● Non-negative Lasso [Wang et al. 2019]

● KL divergence case not previously addressed!
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Problem definition

● The L1-regularized Kullback-Leibler regression problem:

● Safe Screening for the KL-L1 problem. Technical ingredients:

– Dual problem

– First-order optimality conditions

– Screening rule

– Safe region

(KL-L1)
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Dual problem

● Primal problem:

● Dual problem:

 

– Dual cost function      and dual feasible set       are obtained by taking the 

Fenchel conjugate of         and                       respectively.

● First-order optimality conditions:

1)  

2)

(primal-dual link)

(subdifferential inclusion)

(KL-L1)
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Optimality conditions

● First-order optimality conditions:

1)

2)
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● Consequence 2)

Safe Screening rule

L. El Ghaoui, V. Viallon, T. Rabbani. Safe Feature Elimination for the Lasso and Sparse Supervised Learning Problems. 
Pacific Journal of Optimization, 2012

 

2)
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Let       be a safe region, then:

Safe screening rule [El Ghaoui et al. 2012]

Example:
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Safe Screening rule

●      is a sphere         ,  with center     and radius     

Let              be a safe region, then:

Safe screening rule [El Ghaoui et al. 2012]

E.g.:
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Safe Screening rule for KL

Let              be a safe region and                      

with                                    and           , then:

KL-L1 Safe screening rule [D.S.F. 2021]

● Improved screening rule for the KL divergence

E.g.:
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where                                               denotes the duality gap.

Safe Region

GAP Safe sphere [Ndiaye et al. 2017]

For any feasible primal-dual pair  

where     is the strong concavity constant of      . 

E. Ndiaye, O. Fercoq, A. Gramfort, J. Salmon. Gap Safe Screening Rules for Sparsity Enforcing Penalties. JMLR, 2017.
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where                                               denotes the duality gap.

● Requires global strong concavity of 

● ISSUE: Not the case for the KL-L1 problem! 

● IDEA: Use local strong concavity.

Safe Region

GAP Safe sphere [Ndiaye et al. 2017]

For any feasible primal-dual pair  

where     is the strong concavity constant of      . 
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Safe Region for KL

KL-L1 GAP Safe sphere [D.S.F. 2021]

For any feasible primal-dual pair   

and .    

●       is    -strongly concave on

● Note that      is not strongly concave on       only.
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Proposed Algorithm

Algorithm 1 : KL-L1 Dynamic GAP Safe Screening [D.S.F. 2021]

Initialize     strong concavity bound on

Repeat until convergence

Primal update :

Dual update : 

Safe screening :
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Proposed Algorithm

Algorithm 1 : KL-L1 Dynamic GAP Safe Screening [D.S.F. 2021]

Initialize     strong concavity bound on

Repeat until convergence

Primal update :

Dual update : 

Safe screening :

Considered solvers:

● Proximal gradient [Harmany et al. 2012]

● Coordinate descent [Hsieh, Dhillon, 2011]

● Majorize-minimize (Multiplicative Update) [Févotte, Idier 2011]
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Experiments

Convergence time

Figure: Convergence vs. Time. 20-Newsgroup data,    .
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– Solvers: Prox. grad. (SPIRAL), Multiplicative update (MU), Coord. descent (CoD).

– Real count datasets:  20-Newsgroups, NIPS papers (word counts)
    TasteProfile (song listening counts).

– Input vector    is a random column of the dataset. Remaining data forms    .

Experiments

is the bound above which
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● Main contribution : safe screening technique for the KL-L1 problem.

– Improved screening rule for the particular KL case.

– Adaptation of GAP Safe sphere exploiting local properties of the 
cost function.

● Significant improvements in terms of convergence time.

● Extensions: check our follow-up paper (below)!

– Other group-decomposable regularizations.

– Other   -divergences as data fidelity.

– Tighter local strong concavity bound.

Concluding remarks

C. F. Dantas, E. Soubies, C. Févotte. Expanding Boundaries of GAP Safe Screening. 2021.

Available at: hal.archives-ouvertes.fr/hal-03147502

Matlab code: github.com/cassiofragadantas
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