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Motivation

Explainable AI (XAI):

provides human-satisfying interpretations of the behavior of “black-box” AI-based models, 

increasing users’ trust on these cumbersome models[1].

Applications:

• Medicine, Autonomous Driving: remarkable demand for reasoning due to the catastrophic 

side effects of single false predictions.

• Criminal Justice: Regulations forcing computer-based models to provide rationale for their 

decisions.

• Novelty detection: detecting abnormally-shaped patterns in real-world industrial data-sets.

[1] Lipton, Z. C. 2018. The Mythos of Model Interpretability: In Machine Learning, the Concept of Interpretability is Both Im portant and Slippery. Queue 

16(3): 31–57. ISSN 1542- 7730. doi:10.1145/3236386.3241340.

Why did the model predict this?

When the model fails to predict correctly?

What features are important for the model?

…
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Background

Terminology:

Post-hoc: models the behavior of the target model after training has concluded.

Local: Illustrates the relationship between the outcome of the target model with the input

Model-specific : Specialized for a certain type of AI-based models, using assumptions 

regarding their architecture and properties

The problem of visual explainability

▪ To visualize the behavior of models trained for image recognition tasks.

▪ Using a heatmap representing the evidence leading the model to decide.

Our problem: Visual explainable AI

▪ A branch of post-hoc and local XAI algorithms

▪ Specialized on all feed-forward CNNs (model-specific)



Visual explanation algorithms:

• Backpropagation-based methods: Calculating the gradient of a model’s output to the input features 

or the hidden neurons (e.g., Vanilla Gradient, Integrated Gradient, Full Gradient).

• CAM-based methods: Visualizing the features extracted in a single layer of the CNNs (e.g., Grad-

CAM, Grad-CAM++, Score-CAM).

• Perturbation-based methods: Probing the model’s behavior using perturbed copies of the input 

image (e.g., RISE, Extremal Perturbation, SISE).
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Existing Works



Randomized Input Sampling for Explanation[2] (RISE):

Novelty:

• Investigating for the model’s explanation by feeding the model with 

copies of the input image perturbed with random masks.

How Perturbation-based Methods Work

6

[2] Petsiuk, Vitali, Abir Das, and Kate Saenko. "Rise: Randomized input sampling for explanation of black-box models." arXiv preprint arXiv:1806.07421 (2018).

Image credit: [2]

Attribution masks: 𝑚 ∈ 𝑀
The set of locations in the input domain: Λ
Explanation map: 𝑆 = 𝔼𝑀[Ψ 𝐼 ⊙ 𝑚 .𝑀]
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How Perturbation-based Methods Work

Research Gap Filled:

▪ Addressing the “Gradient Saturation” problem (Grad-CAM).

▪ Enhanced spatial resolution and clarity in the produced explanations (Grad-CAM, RISE).

▪ Improved consistency in the explanations (RISE).

▪ Considerable Decrease in the runtime (RISE, Score-CAM).

Novelty:

▪ Visualizing the perspective of individual layers 

via attribution-based input sampling.

▪ Replacing the random masks in RISE method 

with attribution masks.

Image credit: [3]

[3] Sattarzadeh, Sam, et al. "Explaining Convolutional Neural Netw orks through Attribution-Based Input Sampling and Block-Wise Feature Aggregation." arXiv e-prints (2020): arXiv-2010.

Semantic Input Sampling for Explanation[3] (SISE):



How SISE Works
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▪ Consists four consecutive phases:

▪ The first phases are applied on multiple layers. Corresponding to each layer, the third phase 

outputs a 2-dimensional map called visualization map.

▪ The visualization maps are aggregated in the last phase to form the desires explanation map.

1. Feature map extraction

2. Feature map selection

3. Attribution mask scoring

4. Feature aggregation

Phase 4:

Fusion block



How SISE Works
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Phases 1-3:

These scores represent “average gradient” 

values for each feature map.

Feature maps: 𝐴𝑖
(𝑙)
∀𝑖 ∈ {1, … , 𝑁}

The set of locations in the feature maps: Λ(𝑙)

Average gradient scores:𝛼𝑖
(𝑙)
= σ

𝜆(𝑙)∈Λ(𝑙)
𝜕Ψ(𝐼)

𝜕𝐴𝑖
𝑙
(𝜆(𝑙))

The feature maps satisfying 
𝛼𝑘
(𝑙)

max
𝑘∈{1,…,𝑁}

𝛼
𝑘
(𝑙) > 𝜇 are selected.

(“𝜇” is a threshold parameter which is set to zero by default.) 

Attribution masks: 𝑚 ∈ 𝑀𝑑
(𝑙)

The set of locations in the input domain: Λ

Visualization map of the layer (𝑙) : 𝑉𝐼,Ψ
(𝑙) = 𝔼

𝑀𝑑
(𝑙)[Ψ 𝐼 ⊙ 𝑚 . 𝐶𝑚(𝜆)]

𝐶𝑚 𝜆 =
𝑚(𝜆)

σ𝜆∈Λ𝑚(𝜆)
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Feature maps: 𝐴𝑖
(𝑙)
∀𝑖 ∈ {1, … , 𝑁}

The set of locations in the feature maps: Λ(𝑙)

Average gradient scores:𝛼𝑖
(𝑙)
= σ

𝜆(𝑙)∈Λ(𝑙)
𝜕Ψ(𝐼)

𝜕𝐴𝑖
𝑙
(𝜆(𝑙))

Let’s take a close look into the second phase of the SISE method! 

The feature maps satisfying 
𝛼𝑘
(𝑙)

max
𝑘∈{1,…,𝑁}

𝛼
𝑘
(𝑙) > 𝜇 are selected.

(“𝜇” is a threshold parameter which is set to zero by default.)

• Are all attribution masks effective in the prediction procedure?

• Are “all” the feature maps with ‘positive’ average gradient scores (positive-

gradient feature maps) free of outliers and background information?

• Is it yet possible to remove more unnecessary computational overhead from 

the SISE method?
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Limitations of SISE

▪ The computational bottleneck of SISE is on its third

phase, when a large set of attribution masks are passed

through the target model.

▪ Most of the ‘positive-gradient’ attribution masks are not

effective in the model’s prediction procedure.

▪ The performance of SISE is dependent to the hyper-

parameter “𝜇”.

Goal

▪ Propose a strategy to tune the threshold parameter “𝜇” in

a positive value in an adaptive manner.

▪ Reach an acceptable trade-off between the performance

and runtime of the explanation method.

Histogram of the normalized average-

gradient values for the feature maps in the 

last convolutional layer of a ResNet-50. 
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Goal

▪ Propose a strategy to tune the threshold parameter “𝜇” in

a positive value in an adaptive manner.

▪ Reach an acceptable trade-off between the performance

and runtime of the explanation method.

Histogram of the normalized average-

gradient values for the feature maps in the 

last convolutional layer of a ResNet-50. 

Idea

▪ Maximizing the ‘inter-class’ variance between the feature

maps in the ‘lower class’ and ‘upper class’.

▪ Discarding the maximum number of ineffective feature

maps, while retaining the explanation information.

▪ Ada-SISE only uses the positive-gradient feature maps in

the upper class to infer the explanation.

Lower class Upper class



Adaptive Semantic Input Sampling for 
Explanation (Ada-SISE)
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Our Approach
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Ada-SISE vs. SISE:

How to filter the 

‘positive-gradient’ 

feature maps?



Our Approach
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The set of feature maps extracted from 

the layer [𝑝]: 𝐹𝑘
[𝑝]

∀ 𝑘 ∈ {1,… ,𝑀𝑝}

Assumption: the layer 𝑝 from the CNN 

model 𝜓(. ) contains 𝑀𝑝 feature maps.

𝐹𝑘
[𝑝]

= 𝐹𝑘
[𝑝]
: Λ[𝑝] →ℝ

The set of locations in 𝐹𝑘
[𝑝]

:: Λ[𝑝]

In the first phase, the input image 𝐼 is 

passed through the model 𝜓(. ).

Notations:
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Average Gradient scores:

𝜎𝑘
[𝑝]

= ෍

𝜆∈Λ[𝑝]

𝜕𝜓(𝐼)

𝜕𝐹
𝑘
𝑝
(𝜆)

𝜌[𝑝] = max
𝑘∈{1,…,𝑀𝑝}

𝜎𝑘
[𝑝]

Normalized Average Gradient scores:

The set of ‘positive-gradient’ feature maps:

𝐹𝑘
𝑝 +

= {𝐹𝑘
𝑝
|𝜐𝑘

𝑝
> 0 , 𝑘 ∈ {1,… ,𝑀𝑝}} SISE
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The set of ‘positive-gradient’ feature maps:

𝐹𝑘
𝑝 +

= {𝐹𝑘
𝑝
|𝜐𝑘

𝑝
> 0 , 𝑘 ∈ {1,… ,𝑀𝑝}}

The set of ‘positive-gradient’ values:

Υ[𝑝] = {𝜐𝑘
𝑝
|𝜐𝑘

𝑝
> 0 , 𝑘 ∈ {1,… ,𝑀𝑝}}

Assumption: the set Υ[𝑝]

is sorted increasingly.

The 𝑖-th minimum value in the set Υ 𝑝 :: Υ 𝑝 (𝑖)



Our Approach

18

The set of ‘positive-gradient’ feature maps:

𝐹𝑘
𝑝 +

= {𝐹𝑘
𝑝
|𝜐𝑘

𝑝
> 0 , 𝑘 ∈ {1,… ,𝑀𝑝}}

The set of ‘positive-gradient’ values:

Υ[𝑝] = {𝜐𝑘
𝑝
|𝜐𝑘

𝑝
> 0 , 𝑘 ∈ {1,… ,𝑀𝑝}}

Assumption: the set Υ[𝑝]

is sorted increasingly.

Lower mean function: Upper mean function:

𝜔𝐻
𝑝
(𝑖) =

σ𝑗=𝑖
|Υ 𝑝 |

(Υ 𝑝 (𝑖))

( ൘
( Υ 𝑝 − 𝑖)

|Υ 𝑝 |
)
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Lower mean function: Upper mean function:

𝜔𝐻
𝑝
(𝑖) =

σ𝑗=𝑖
|Υ 𝑝 |

(Υ 𝑝 (𝑖))

( ൘
( Υ 𝑝 − 𝑖)

|Υ 𝑝 |
)

𝜏 𝑝 𝑖 = 𝜔𝐿
𝑝
𝑖 × 𝜔𝐻

𝑝
𝑖 × [

Υ 𝑝 − 𝑖

Υ 𝑝
−

𝑖

|Υ 𝑝 |
]2

𝜏 𝑝 𝑖 = 𝜔𝐿
𝑝
𝑖 × 𝜔𝐻

𝑝
𝑖 × [

Υ 𝑝 − 2𝑖

Υ 𝑝
]2

𝜇 𝑝 𝑖 = Υ 𝑝 ( argmax
𝑗∈ 1,…, Υ 𝑝

𝜏 𝑝 𝑗 )

Inter-class variance

Maximizing the inter-class variance between the 

Average-Gradient values of the lower and upper class:

max
𝑗∈ 1,…, Υ 𝑝

𝜏 𝑝 𝑗

The number of 

selected feature maps:



PASCAL VOC 2007[5]:

➢ Purpose: Multi-label image classification, Object 

Detection

➢ Containing 4963 test images in 20 classes, Bounding 

boxes provided 

➢ A VGG-16 model and a ResNet-50 model trained on 

this dataset are utilized[4].
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Experiments: Datasets and Models

[5] Everingham, M.; Van Gool, L.; Williams, C. K. I.; Winn, J.; and Zisserman, A. 2007. The PASCAL Visual Object Classes Chal lenge 2007 (VOC2007) Results.
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Quantitative evaluation: metrics

Ground truth-based metrics

Verifying the meaningfulness of explanation methods, and their ability in feature 

visualization.

➢ Energy-based pointing game[8] (The fraction of energy inside am explanation map 

captured in a bounding box.)

➢ Bounding box[9] (Adaptive version of mean Intersection over Union (mIoU) ).

[8] Wang, H.; Wang, Z.; Du, M.; Yang, F.; Zhang, Z.; Ding, S.; Mardziel, P.; and Hu, X. 2020. Score-CAM: Score-Weighted Visual Explanations for Convolutional 

Neural Networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 24 –25.

[9] Schulz, K.; Sixt, L.; Tombari, F.; and Landgraf, T. 2020. Restricting the Flow: Information Bottlenecks for Attribution. In International Conference on 

Learning Representations. URL https://openreview.net/forum?id=S1xWh1rYwB.

[10] Chattopadhay, A.; Sarkar, A.; Howlader, P.; and Balasubramanian, V. N. 2018. Grad-CAM++: Generalized GradientBased Visual Explanations for Deep 

Convolutional Networks. In 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), 839–847. doi:10.1109/WACV. 2018.00097.

[11] Ramaswamy, H. G.; et al. 2020. Ablation-CAM: Visual Explanations for Deep Convolutional Network via Gradientfree Localization. In The IEEE Winter 

Conference on Applications of Computer Vision, 983–991

Model truth-based metrics

Justifying the faithfulness and validity of the explanation maps from the perspective 

of the model.

➢ Drop rate[10] (Measuring the average drop in the model’s confidence score (if 

drops), when only the top 15% of the pixels are retained).

➢ Increase rate[10] (Measuring the rate of increase in the model’s confidence 

score, when only the top 15% of the pixels are retained).
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Empirical Results

Dataset: PASCAL VOC 2007

Metric Grad-CAM Grad-CAM++
Extremal 

Perturbation
Score-CAM

Integrated 

Gradients
FullGrad RISE SISE Ada-SISE

V
G

G
1

6

EBPG(%) 55.44 46.29 61.19 46.42 36.87 38.72 33.44 60.54 60.79

Bbox(%) 51.7 55.59 51.2 54.98 33.97 54.17 54.59 55.68 55.73

Drop(%) 49.47 60.63 43.90 39.79 64.74 60.78 39.62 38.40 38.87

Increase(%) 31.08 23.89 32.65 36.42 26.17 22.73 37.76 37.96 38.25

R
e

s
N

e
t-

5
0

EBPG(%) 60.08 47.78 63.24 35.56 40.62 39.55 32.86 66.08 66.4

Bbox(%) 60.25 58.66 52.34 60.02 34.79 44.94 55.55 61.59 61.7

Drop(%) 35.80 41.77 39.38 35.36 66.12 65.99 39.77 30.92 30.92

Increase(%) 36.58 32.15 34.27 37.08 24.24 25.36 37.08 40.22 40.75

For each metric, the best is shown in bold, and the second-best is underlined. 



23

Complexity Analysis Results

Dataset: PASCAL VOC 2007

Model RISE SISE Ada-SISE

VGG-16 64.28 s 5.96 s 4.23 s

ResNet-50 26.08 s 9.21 s 6.29 s

Average run-time on different models

Dataset: PASCAL VOC 2007

# of  the conlvolutional block p1 p2 p3 p4 p5 Total

RISE N/A N/A N/A N/A N/A 8000

SISE 31 130 262 515 1008 1946

Ada-SISE 26 114 179 420 551 1290

Average number of required random/attribution masks for 

RISE/SISE/Ada-SISE to operate on a ResNet-50 Model 

Ada-SISE reduces 33 percent of the computational load 

of SISE, without any performance degradation 



Ada-SISE

1. Reducing 33% of the computational overhead in the bottleneck of SISE method. 

2. Discarding the outlier information from the set of generated attribution masks.

3. The properties above are verified through qualitative and quantitative experiments on different 

model trained with the PASCAL VOC 2007 dataset.

4. Eliminating the need for hyperparameter-tuning; a noteworthy benefit in industry applications.
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Takeaways
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