
GPS-DENIED NAVIGATION USING SAR IMAGES AND NEURAL NETWORKS

Teresa White1, Jesse Wheeler2, Colton Lindstrom3, Randall Christensen3, Kevin R. Moon1

1Dept. Mathematics & Statistics, 3Dept. Electrical & Computer Engineering—Utah State University
2Dept. Statistics—University of Michigan

GPS-DENIED NAVIGATION USING SAR IMAGES AND NEURAL NETWORKS

Teresa White1, Jesse Wheeler2, Colton Lindstrom3, Randall Christensen3, Kevin R. Moon1

1Dept. Mathematics & Statistics, 3Dept. Electrical & Computer Engineering—Utah State University
2Dept. Statistics—University of Michigan

Introduction

Precise navigation data is necessary for autonomous vehicles.

• In normal circumstances: GPS is typically used

PROBLEM:

Error Shift Direction Blur Direction
AT Position AT None
CT Position CT None
D Position CT None
AT Velocity None AT
CT Velocity AT None
D Velocity AT None
AT Attitude None Small AT
CT Attitude None Small AT
D Attitude None Small AT

Table 1: Effect of navigation errors on BPA-SAR im-
ages (AT= Along Track; CT= Cross Track; D = Down).

• GPS may not always be available

• We use synthetic aperture radar (SAR)
images to estimate the navigation data.

• The Back-projection Algorithm (BPA) is
used to create SAR images [1].

• Any error in position, velocity, or attitude
results in distorted SAR images [2].

• Different navigation error combinations
create subtly different image distortions.

Fig. 1: Blur (Top) and shift (Bottom) distortions caused by navigation errors in AT velocity and CT position, respectively.

• Any error in position, velocity, or attitude results in distorted SAR images [2].

• Different navigation error combinations create subtly different image distortions.

SOLUTION:

• We use convolutional neural networks (CNN) to estimate initial navigation errors

from distorted SAR images.

• True flight trajectory is recovered from the initial navigational errors [2].

• We compare distorted images to previously-obtained reference images.

The SAR Data

Three different sets of SAR image data:

• Simulated data: 5 second aperture
length (MATLAB)

• Real datasets: 2 and a 10 second aper-
ture lengths (Space Dynamics Labora-
tory)

For each of the datasets, six different scenar-
ios were studied.

Scenario # AT Pos CT Pos D Pos AT Vel CT Vel D Vel
1 x x
2 x x
3 x x x x
4 x x x
5 x x x
6 x x x x x x

Table 2: Summary of scenarios and corresponding ini-
tial errors. Each “x” on the table indicates whether the
error state was considered.

Dataset Training Validation Testing
# targets # images # targets # images # targets # images

Sim-5-sec 134 13500 19 1900 39 3800
Real-2-sec 130 13000 18 1800 37 3700
Real-10-sec 122 12300 17 1700 36 3500

Table 3: Training (70%), validation (10%), test (20%) set.

• For each target, we generated 100 distorted
images of size 80 × 80 pixels, paired with the
corresponding navigation errors.

• Navigational errors are standardized to ensure
equal consideration during training.

Neural Network Architecture

• We used transfer learning with the pretrained Wide ResNet 50_2 architecture forming the base of
our model [3].

• Our model:

– Input: the distorted image, reference image, and the difference image.
– Input is fed into a randomly initialized convolutional layer followed by the ResNet architecture.
– ResNet final layer replaced with a fully connected layer with same output number as error states.

• L2 regularization and the average mean squared error (MSE) loss function was used across all
considered initial errors for training and testing:
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[m] : Number of error states considered

[n] : Number of training images in the data

[s↵� ] : True standardized error of the �th error and the ↵th image

[ŝ↵� ] : Corresponding error estimate by the neural network

• MSE less than one indicates that the neural network is learning relevant information for this task.

Experimental Results

Fig. 2: Distribution of Error States before (blue line) and after (histogram) estimation for real-2-sec dataset for scenarios 1 and 4.

Fig. 3: Training and validation MSE as a function of training epoch for scenario 1 (Left) and for scenario 2 (Right) for the real-2-sec

dataset. A large gap between the training and validation error suggests the network may be overfitting.

Scenario # Dataset AT Pos CT Pos D Pos AT Vel CT Vel D Vel

1
MSE (Sim-5-sec) 0.0594 0.0289 N/A N/A N/A N/A
MSE (Real-2-sec) 0.0563 0.0425 N/A N/A N/A N/A
MSE (Real-10-sec) 0.1808 0.1338 N/A N/A N/A N/A

2
MSE (Sim-5-sec) N/A N/A N/A 0.2456 0.1162 N/A
MSE (Real-2-sec) N/A N/A N/A 1.0729 0.1683 N/A
MSE (Real-10-sec) N/A N/A N/A 0.7895 0.0812 N/A

3
MSE (Sim-5-sec) 0.5229 0.2237 N/A 0.2442 0.1259 N/A
MSE (Real-2-sec) 1.0657 0.2340 N/A 1.0682 0.1468 N/A
MSE (Real-10-sec) 0.8864 0.2924 N/A 0.7894 0.1319 N/A

4
MSE (Sim-5-sec) 0.0941 0.9204 0.2800 N/A N/A N/A
MSE (Real-2-sec) 0.1020 0.8102 0.3734 N/A N/A N/A
MSE (Real-10-sec) 0.2694 0.8165 0.4186 N/A N/A N/A

5
MSE (Sim-5-sec) N/A N/A N/A 0.2834 0.7982 0.5460
MSE (Real-2-sec) N/A N/A N/A 1.0699 0.6459 0.5795
MSE (Real-10-sec) N/A N/A N/A 0.9072 0.6453 0.5781

6
MSE (Sim-5-sec) 0.6321 0.9139 0.5245 0.3677 0.8661 0.5331
MSE (Real-2-sec) 1.0846 0.7509 0.5353 1.0868 0.6039 0.5984
MSE (Real-10-sec) 0.9875 0.7382 0.5102 0.9447 0.6233 0.5113

Table 4: Summary of Model Performance for each error state for scenarios 1-6 of the sim-5-sec, the real-2-sec,
and the real-10-sec datasets.

Discussion

• Network performs well in the absence of ambiguous error sources, reducing the MSE
of the active navigation errors.

• Network successfully distinguished between CT shifts caused by CT and D pos errors
in real data.

• Increasing aperture length improves performance with blur-related errors.

– Some degree of learning occurs in most scenarios

• Future work: different aperture lengths, including vehicle/target geometry, more train-
ing data.
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