Thought deep model achieved tremendous success,
two challenges remain for traditional deep learning:

Hence, it 1s essential to explore methods that can
train deep models effectively under label noise.
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Background

The generalization performance of deep

heavily depend on large-scale accurately labeled

data.

The training data often suffer from label noise 1n

many applications.

model

Motivation

or the case of binary classification, it h
been shown that binary symmetric loss
function can be noise-tolerant.

Motivated by this observation, we wonder
whether the robustness of the noise-tolerant

binary loss functions can be generalized
case of multi-category classification.
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ataset & label noise. We use MNIST, FASHION-MNIST, and CIFAR-10 to verify our applb
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This paper proposes to tackle K-class classification problems by employing K binary classifiers.

Each binary classifier g, (x)can be regarded as a scoring function that reveals how likely a sample

Our approach

belongs to category k versus the rest K — 1 categories.

Then, the multi-category classifier f(x) have the following formulation: f(x) = argmax gi(x)
ke{l,---

Finally, We leverage the multi-category large margin classification approaches, 1.e. Pairwise-
Comparison (PC) or One-Versus-All (OVA), to jointly train the binary classifiers for multi-category

classification.

Together with binary symmetric loss functlon the objectlve loss can be formulated as follows:
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Experimental results

We verity the robustness of our approach against the symmetric noise, the simple non-uniform

noise.
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Fig. 1. Classification accuracy vs training epochs over the MNIST dataset with = 60% symmetric noise.

The results clearly verity that our proposed loss functions are noise-tolerant.
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Label noise

f Comparison methodx

We compare the performance of our

approach with different loss functions,
including the CCE, MSE, and MAE loss.

* CCE and MSE are standard loss
functions widely used 1n machine
learning.

e The MAE loss has been shown to be

/

robust against label noise in

multicategory classification
problems.
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