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INTRODUCTION RESULTS

Existing unsupervised methods for metal artifact reduction has two limitations: o _ _ _ _ . .
o o _ _ Table 1: Quantitative evaluation on synthesized dataset (DeepLesion). Table 2: Ablation Study on synthesized dataset (DeepLesion).
1) only use features Iin Image space, which Is not enough to restore heavily affected regions;
o _ _ Method PSNR (dB)  SSIM (%) Components (a) (b) (c) (d)
2) lack the distinction and selection for effective features.
_ _ | _ cGANMAR 34.60 92.89 AEN 9 J N N
In this study, we use a pair of complementary networks: Content Extraction Network (CEN) and Supervised R2Net 37 05 04 41 Skip Connection J . J J
Artifact _Extractlon Ne_twork (AEN) to_decompose the_ co_ntent comp_onent and rr_1eta! artl_fa(?t co_mponent DuDoNet++ 38.76 96.96 Attention Mechanism J » » J
from artifact-affected images, respectively; Image prior is adopted in CEN by first inpainting Iin ADN 33.88 02.17
sinogram space and then refining in image space; Attention mechanism and skip connection are Unsupervised SDGAN 29.16 87.13 PSNR (dB) 34.36 3408 3415  34.53
AEDNet (Ours) 34.53 94 42 SSIM (%) 904,14 92.75 9345 94.4?
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Figure 1: Workflow of AEDNet. . dataset (vertebrae

AEDNet has two branches (AEN
and CEN). AEN is applied to
further correct the output of CEN.
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Synthesized dataset — DeepLesion: 1) Training set: 1120
synthesized paired images with 90 metal shapes; 2) Test set: 200
synthesized paired images with 10 metal shapes.
Clinical dataset - the vertebrae localization and identification
dataset from Spineweb: 1) Training set: 600 images artifact-affected
Images and 3298 clean images; 2) Test set: 183 artifact-affected
Images.

Ablation study Is conducted on synthetic dataset (Deepl_esion)
to understand the effectiveness of AEN and the embeddings
of BCU.
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| conv, 3x3 Figure 4: Qualitative comparison with state-of-the-art methods
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on synthesized dataset (DeepLesion).
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CONCLUSION

_ _ _ _ _ O The utilization of image prior achieves unsupervised learning for metal
Figure 3(a): Attention and skip connection designs. _ _
F—— artifact reduction;

' | O The utilization of decomposed method effectively suppresses residual
] I IR ﬂ HJ[ I artifacts;
E D | D

- - E O The utilization of attention mechanism and skip connection provides feature
fusion and additional flexibility in focusing on important information.
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/ FUTURE WORKS \

® Blurs appear In corrected images due
to information loss in too deep networks.
Searching for balance between image
deblurring and the effectiveness;

@ Consider to validate the robustness of
the model and generalize it for more
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Figure 3(b): Architecture of AEN (left). Figure 3(c):
Architecture of Inpainting stage and Refinement stage
of CEN (right).

Figure 2: Explanation on problem that residual artifacts
clinical situations.

AEDNet successfully alleviates secondary artifact and recovers more

exists even If perfectly correction is finished with
@ails for artifact-affected CT images

Image prior. This is the reason to use AEN.




