

Audio samples

MaskCycleGAN-VC Search

http://www.kecl.ntt.co.jp/people/kaneko.takuhiro/ projects/maskcyclegan-vc/index.html

MaskCycleGAN-VC: Learning Non-parallel Voice Conversion with Filling in Frames

Takuhiro Kaneko Hirokazu Kameoka

Kou Tanaka

Nobukatsu Hojo

NTT Communication Science Laboratories, NTT Corporation, Japan

Background and Objective 1/3

Non-parallel voice conversion

• Training voice converter without parallel corpus

Background and Objective 2/3

Non-parallel conversion in mel-spectrogram domain

- Recent advances in mel-spectrogram vocoders
 - > WaveNet [Shen+18], WaveGlow [Prenger+19], MelGAN [Kumar+19], Parallel WaveGAN [Yamamoto+20]

- Recent advances in non-parallel VCs (e.g., CycleGAN-VCs [Kaneko+17/19/20])
 - > CycleGAN-VC/VC2: Limited to mel-cepstrum conversion, not mel-spectrogram conversion
 - > CycleGAN-VC3: Applicable to mel-spectrogram conversion, but requires additional module

 \rightarrow As alternative, we propose MaskCycleGAN-VC

Background and Objective 3/3

Challenge of mel-spectrogram conversion

• Required to convert only voice factors while retaining time-frequency structure

Learning non-parallel conversion with filling in frames (FIF)

- 1. Create **missing frames** artificially
- 2. Fill in missing frames based on surrounding frames
 → Learn time-frequency structure in self-supervised manner
 Strength 1: Additional supervision is not required
 Strength 2: Increase in model size is negligibly small

Frame

Mel-spectrogram

Related work

- Representation learning via image inpainting (Context Encoder [Pathak+2016])
- Representation learning via text infilling (MaskGAN [Fedus+2018], BERT [Devlin+2019])

Learning non-parallel conversion based on cycle consistency

• Networks: Converter, inverse converter, discriminator, and second discriminator

TT

Baseline: CycleGAN-VC2 [Kaneko+19] 2/2

Losses: CycleGAN-VC2 is optimized using four losses

①Cycle-consistency loss

ТТ

Proposal: MaskCycleGAN-VC 1/5

Learning non-parallel conversion with filling in frames

Proposal: MaskCycleGAN-VC 2/5

Learning non-parallel conversion with filling in frames

Proposal: MaskCycleGAN-VC 3/5

Proposal: MaskCycleGAN-VC 4/5

Proposal: MaskCycleGAN-VC 5/5

Losses: Same as CycleGAN-VC2 losses

①Cycle-consistency loss

Key Idea (Reprint)

Learning non-parallel conversion with filling in frames (FIF)

- 1. Create **missing frames** artificially
- 2. Fill in missing frames based on surrounding frames
 → Learn time-frequency structure in self-supervised manner
 Strength 1: Additional supervision is not required
 Strength 2: Increase in model size is negligibly small

Frame

Mel-spectrogram

Related work

- Representation learning via image inpainting (Context Encoder [Pathak+2016])
- Representation learning via text infilling (MaskGAN [Fedus+2018], BERT [Devlin+2019])

Experimental Settings

Data

- Dataset: Spoke task of Voice Conversion Challenge 2018 [Lorenzo-Trueba+18]
 - > 4 speakers: VCC2SF3, VCC2SM3, VCC2TF1, & VCC2TM1 (S: Source, T: Target, F: Female, M: Male)
- Utterances: 81 utterances for training (5 min) & 35 utterances for evaluation
- Sampling rate: 22.05 kHz
- Conversion target: 80-dimensional log mel-spectrogram

Objective Evaluation 1/3

Mel-Cepstral Distortion Kernel DeepSpeech Distance [Binkowski+2020]

Comparison among different-sized masks

MCD [dB]/KDSD [x10⁵] Smaller values are preferable

	Method	SF-TF	SM-TM	SF-TM	SM-TF
FIF X: X% (constant) is missing	①FIF 0	7.66/786	7.11/356	6.91/277	8.11/1094
	②FIF 25	7.45/560	6.85/297	6.76/249	7.84/775
FIF 0-X: 0-X% (variable) – is missing	③FIF 0-25	7.45/489	6.83/103	6.78/206	7.80/605
	④FIF 0-50	7.37/467	6.77/ 83.8	6.73/ 146	7.64/502
	⑤FIF 0-75	7.40/468	6.75 /89.2	6.72 /169	7.66/546

1. Zero-sized (1) vs non-zero sized (2-5): Non-zero sized mask is better

- 2. Constant-sized (2) vs variable-sized (4): Variable-sized mask is better
- 3. Size dependency (3–5): FIF 0-50 is the best

Objective Evaluation 2/3

Mel-Cepstral Distortion Kernel DeepSpeech Distance [Binkowski+2020]

Comparison among different types of masks

MCD [dB]/KDSD [x10⁵] Smaller values are preferable

	Method	SF-TF	SM-TM	SF-TM	SM-TF
Subsequent frames	1)FIF	7.37/467	6.77/83.8	6.73/146	7.64/502
Non-subsequent frames	\bigcirc FIF _{NS}	7.53/648	7.00/638	6.90/270	7.97/1181
Subsequent spectrogram	③FIS	7.52/727	6.95/437	6.88/418	7.94/974
Point-wise	④FIP	7.65/920	6.97/449	7.09/774	8.24/2126

• FIF (1) is the best

> Subsequent temporal mask is the most useful for helping non-parallel learning

Objective Evaluation 3/3

Mel-Cepstral Distortion Kernel DeepSpeech Distance [Binkowski+2020]

Comparison among CycleGAN-VCs

MCD [dB]/KDSD [x10⁵] Smaller values are preferable

	Method	SF-TF	SM-TM	SF-TM	SM-TF	#param
MaskCycleGAN-VC (proposed)	1)Mask	7.37 /467	6.77/83.8	6.73/146	7.64/502	16M
CycleGAN-VC2 (w/o FIF)	②V2 [Kaneko+19]	7.66/891	7.07/509	6.96/494	8.07/1107	16M
CycleGAN-VC3 (latest)	③ V3 [Kaneko+20]	7.54/ 369	7.10/227	6.91/311	7.97/819	27M

• MaskCycleGAN-VC (1) is the best

> In terms of model size, Mask is similar to V2 and smaller than V3

Subjective Evaluation

Mask outperforms V2 & V3 in terms of both metrics

V2: CycleGAN-VC2 [Kaneko+19] V3: CycleGAN-VC3 [Kaneko+20] Mask: MaskCycleGAN-VC (Proposed)

Audio Samples

Audio samples

MaskCycleGAN-VC Search

http://www.kecl.ntt.co.jp/people/kaneko.takuhiro/ projects/maskcyclegan-vc/index.html

Female (SF3) \rightarrow Male (TM1)

Male (SM3) \rightarrow Male (TM1)

V2: CycleGAN-VC2 [Kaneko+19] V3: CycleGAN-VC3 [Kaneko+20] Mask: MaskCycleGAN-VC (Proposed)

Summary and Conclusion

Objective

Non-parallel mel-spectrogram conversion

Proposal

- MaskCycleGAN-VC
 - > Learning non-parallel conversion with FIF

Experimental results

- Naturalness & speaker similarity: Mask outperforms V2 & V3
- Model size: Mask is similar to V2 and smaller than V3

Future work

• Applications to multi-domain VC and application-side VC

MaskCycleGAN-VC

http://www.kecl.ntt.co.jp/people/kaneko.takuhiro/ projects/maskcyclegan-vc/index.html