

D Background and objective I. Non-parallel voice conversion

Pros: Easy to collect **Cons:** Hard to learn (Challenge to be addressed)

II. Non-parallel mel-spectrogram conversion

Recent advances in mel-spectrogram vocoder

- WaveNet [Shen+18], WaveGlow [Prenger+19], MelGAN [Kumar+19], Parallel WaveGAN [Yamamoto+20]

Recent advances in non-parallel VCs (e.g., CycleGAN-VCs) - CycleGAN-VC/VC2 [Kaneko+17/19]

- Limited to mel-cepstrum conversion, not mel-spectrogram conversion - CycleGAN-VC3 [Kaneko+20]
- Applicable to mel-specgrogram conversion, but requires additional module \rightarrow As alternative, we propose MaskCycleGAN-VC3

III. Challenge of mel-spectrogram conversion

How to convert only voice factors while retaining time-frequency structure in mel-spectrogram?

2 Key idea

Learning non-parallel voice conversion with filling in frames (FIF)

Missing frames

- Create **missing frames** artificially
- 2. Fill in missing frames based on surrounding frames
- \rightarrow Learn time-frequency structure in **self-supervised** manner
- **Fill in**
- Strength 1: Additional supervision is not required
- Strength 2: Increase in model size is negligibly small

MaskCycleGAN-VC: Learning Non-parallel Voice Conversion with Filling in Frames

Takuhiro Kaneko, Hirokazu Kameoka, Kou Tanaka, Nobukatsu Hojo NTT Communication Science Laboratories, NTT Corporation, Japan

Baseline: CycleGAN-VC2 [Kaneko+19]

Learning non-parallel conversion based on cycle consistency

Procedure

1. Converts source mel-spectrogram to target mel-spectrogram

2. Reconstructs source mel-spectrogram from the converted mel-spectrogram

Losses

- Cycle-consistency loss
- Helps find pseudo pair within cycle-consistency constraint - Adversarial loss
- Makes converted mel-spectrogram appear to be the target - Second adversarial loss
- Makes reconstructed mel-spectrogram appear to be the source

Operation of the second sec

Learning non-parallel conversion with filling in frames (FIF)

Procedure

- 1. Generate temporal mask
- 2. Apply the mask to source mel-spectrogram \rightarrow Create missing frames artificially
- 3. Fill in the missing frames through forward conversion process
- 4. Prepare all-ones mask under assumption that filling has been accomplished ahead of this process
- 5. Perform inverse conversion

Losses

- Same as CycleGAN-VC2 losses

In CycleGAN-VC2, harmonic structure is compromised \rightarrow How to prevent?

6 Experiments

I. Experimental settings

Dataset: Spoke task of Voice Conversion Challenge 2018 [Lorenzo-Trueba+18] - Four speakers: VCC2SF3, VCC2SM3, VCC2TF1, and VCC2TM1 **Utterances:** 81 utterances for training (5 min) & 35 utterances for evaluation Sampling rate: 22.05 kHz **Conversion target:** 80-dimensional log mel-spectrogram Waveform synthesis: MelGAN vocoder [Kumar+19]

II. Objective evaluation

Metrics: MCD [dB]/KDSD [×10⁵] [Binkowski+2020] (Smaller values are preferable)

i. Comparison among different-sized mask

FIF X
X% (constant) is missing

Size	SF-TF	SM-TM	SF-TM	SM-TF
FIF 0 FIF 25	7.66/786 $7.45/560$	7.11/356 $6.85/297$	6.91/277 6.76/249	$8.11/1094 \\ 7.84/775$
FIF 0-25 FIF 0-50 FIF 0-75	7.45/489 7.37/467 7.40/468	6.83/103 6.77/83.8 6.75/89.2	6.78/206 6.73/146 6.72/169	7.80/605 7.64/502 7.66/546

FIF O-X 0-X% (variable) is missing

Subcoquent frames
Subsequent frames
Non-subsequent frames
Subsequent spectrogram
Point-wise

iong	uncici	птурез	UIIIaSk	3
Type	SF-TF	SM-TM	SF-TM	SM-TF
FIF	7.37/467	6.77/83.8	6.73/146	7.64/502
$\mathrm{FIF}_{\mathrm{NS}}$	7.53/648	7.00/638	6.90/270	7.97/1181
FIS	7.52/727	6.95/437	6.88/418	7.94/974
FIP	7.65/920	6.97/449	7.09/774	8.24/2126

iii. Comparison among CycleGAN-VCs

	Mode
/laskCycleGAN-VC (Proposed)	Mask
CycleGAN-VC2 [Kaneko+19]	V2
CycleGAN-VC3 [Kaneko+20]	V3

III. Subjective evaluation i. AB test on naturalness

SPE-11: Voice Conversion 1: Non-parallel Conversion

ii. Comparison among different types of masks

SF-TF	SM-TM	SF-TM	SM-TF	#param
7.37/467	6.77/83.8	6.73/146	7.64/502	16M
7.66/891	7.07/509	6.96/494	8.07/1107	16M
7.54/369	7.10/227	6.91/311	7.97/819	$27\mathrm{M}$

http://www.kecl.ntt.co.jp/people/kaneko.takuhiro/projects/maskcyclegan-vc/

Copyright 2021 NTT CORPORATION