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weighted spatial features. The maximum a posteriori (MAP) probabilities from the spatial
features are combined using the minimum classification error (MCE) framework to offer an
optimal VAD decision in a spectral domain.
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- Motivation behind our approach is to use the most spatial information available from the two Secondary : IP) | : |
microphones, which successfully characterizes the dynamic evolution of speech in time especially In mic b4 I l :
the non-stationary noise environments. - L—_ -
Fig. 1. Overall block diagram of the proposed two-microphone VAD approach
- We consider not only single spatial features, but multiple spatial features such as power level difference
ratio (PLDR), coherence function, and phase difference by applying MCE scheme.
- We attempt to incorporate the different contributions of the spatial features under dynamic acoustic RESULILIS

environments by applying the MCE scheme.

PROPOSED METHOD | * Experimental environment

— The total samples were composed of 520s long speech data and noisy sentences were recorded at
various distances and azimuth angles.

 Feature selection

- PLDR : PLDR is the ratio of the power level difference (PLD) and the PLD of the noise which is
consist of the long-term PLDR (LT-PLDR : £ ) and the short-term PLDR (ST-PLDR : S ).

AP, : PLD of the signal

— For simulating noisy environments, speech data was artificially contaminated with four different noisy
sources such as babble, office, white, and factory from the NOISEX-92 database.
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The a posteriori probability of each feature is obtained by using the sigmoid fitting approach which of \ |
I training by the model-trust algorithm to minimize cross-entropy error function as follows: R -
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From the combined score, we estimate the weight for which the features are differently contributed in
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Specifically, the GPD technique approximates the empirical classification error by a smooth objective
function which is the step loss function of the sigmoid function as given by

1
L(t) = 1 + exp(—yD(A,(n)))’

where the loss function yields a minimum value when the weights are optimized. Then, the weights of
each features are updated as follows:

D(A,(n)) = <
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CONCLUSIONS

v > 0 where 7y . gradient

* In this study, we proposed a dual-microphone VAD technique using optimally weighted
spatial features including the PLDR, coherence, and phase vector.

= logw; » The principal contribution is using the MCE framework adopt the optimal weights for
Gi(n + 1) = @ (n) eaé’ft) mom  where e stepsize spatial features to the VAD algorithm by discriminative weight training.
Once &, i updated, we adopt the inverse form to &, as given by  To o_p_tlmlze the V\{elght_s of multiple spatial featureg, the MAP probability of t_he |
s (5, traditional VVADs Is estimated by model-trust algorithm. Then, the MCE training Is
p(w;) : . . .
Wi = =77 . adopted to obtain the optimal weights for each spatial features.
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* The proposed VAD technique using multiple spatial features provides reliable VAD
performances under various noise environments including non-stationary conditions that

Finally, we perform the VAD decision based on the MAP technique by using the MCE training as follows:
p(H(n) = Hi|®(n)) _p,

where n . threshold

p(H(n) = Ho|®(n)) “Ho ' | babble and office noises.
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