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spatial and temporal components brings impressive improvement in action recognition. , q q .
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MDConv has the same FLOPs and parameters as the traditional 1D temporal convolution. Also, o c y g . e o)
. . . . . 3
we propose the Spatial-Temporal Feature Pyramid Module (STFPM) to fuse spatial semantics in TxHXW, 7~ gl —> L |~
different scales in a light-weight way. Our extensive experiments show that the models which Residual block with MDConv (MDBIlock)
integrate with MDConv achieve better accuracy on several large-scale action recognition . . _ . .
benchmarks such as Kinetics, Something-Something V1&V2 and AVA datasets. Fig. 2. Our proposed MDBlock. We replace the spatial-temporal Fig. 3. The overview architecture of the proposed action detection networks. The networks
convolution with four MDConvs, concatenate the outputs together, consists of 3D CNN feature extraction backbone, STFPM and RolAlign and classifier. Each block of
and obtain the feature maps with the same size of spatial-temporal backbone is replaced by our proposed MDBlock which is shown in Fig. 2. The STFPM aggregates

convolution. multi-scale feature.
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Fig. 1. An example of moving object in spatio-temporal state and our proposed Multi- ¢ ackbone train | krames | = o1 ace | Acc
Directional Convolution (MDConv). T, H, W represent the time dimension and the height and BN- < 1 71.1 1 893
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(a), (b) and (c) are the states of moving circular in spatio-temporal space. The traditional R(2+1)D BecNer.34 - w | 72.0 | 90.0
spatial-temporal convolution (d) can not recognize the trajectory of the object (the red arrows [2] esivet- none v | 73.3 | 91.0
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Our proposed Multi-Directional Convolution (MDConv) is defined as follow: 16 x4 [3] sivet: none v | 76.3 | 924 (a) SlowFast 8X8 (b) SlowFast 8X8 with MDConv and STFPM
( Rright = {(to + At  hg,wo + YAL)|ALt €T} Rurove = Romuwt — {Retiti }- SS:F[:;J ResNet-50 | none 3248 j, ;;2 Eig Fig. 4. Cor;mgarison ;)f Ires-ults of actLon localization by SlowFast models and SlowFast-MDConv-
Riese = {(to + At, ho, wo — YAL)|AL € T . . STFPM. Adding modules improve the accuracy.
Rumut{ Rup = {(to + At, hg + yAt, wg)|At € T}  Yde (p) = Z w(p:) -2(pi);, Rac € Ruove Table 2. Performance of different 3D CNN method with/without
Raown = {(to + At, hg — vAt, wo)|At € T pi€la. MDConv on Something-Something V1&V2. All methods are /CONCLUSK)NS -- In this paper we propose the Multi-Directional Convolution (MDConv), whicw\
Rain = {(to+At, ho, wo )|AteT} Youtput = Yright, Yle ft, Yup, Ydown] pretrained on Kinetics-400 with backbone ResNet-50. operates simultaneously on the spatial and temporal dimensions. We also propose the Spatial-
Temporal Feature Pyramid Module (STFPM) to fuse spatial semantics in different scales. With
MDConv and STFPM, the improved model can encode features by crossing spatialtemporal
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