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Linear Inverse Problems
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MRI machine imagemeasurements

Other applications: Remote sensing,  super-resolution,  etc.



state-of-the-art performance

requires large training datasets

no theoretical guarantees

inconsistent: (in general)

Classic vs. DNNs
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: prior,  tractable

no training data

theoretical guarantees

consistent:

Antun et al., On instabilities of deep learning in image reconstruction and the potential costs of AI, PNAS, 2020



Measurement Inconsistency in DNNs
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Training Deployment

Unknown

(empirical loss)

Training

known



Numerical Evidence
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DNNs “ignore” measurements during deployment!

CNN

Measurement consistency of MRI DNNs.

P-n-P

RNN

Measurement consistency of SR DNNs.

P-n-P

CRNN: Embeds a DC layer than minimizes

MoDL: DC layer minimize the sum of the trained CNN denoiser and  
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Formalize that generalization errors imply inconsistency under ERM

New framework: guaranteeing consistency of DNN outputs

Application to MRI

Our Work



Measurement Inconsistency in DNNs
Suppose we train a DNN                            for minimizing inconsistency:

empirical risk

risk

Proposition

Assume  generalization error                                                                                and

Then,  for any                                 ,

inconsistency



New Framework: TV-TV Minimization

+ +

Deep networks for

Linear Inverse Problems
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Improves the quality of Guarantees Easily adapted to different     operators 



TV-TV Minimization

Output from DNN 

MeasurementSensing 
Matrix

 Solved via ADMM 

 All sub-problems have a closed form solution

 Algorithms details are in the paper
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Enforce measurement 

consistency

has a small total-variation

is close 

to



Experiments on MRI
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* C. Qin, J. Schlemper, J. Caballero, A. N. Price, J. V. Hajnal, D. Rueckert
Convolutional recurrent neural networks for dynamic MR image reconstruction
IEEE Transaction on Medical Imaging, Vol 38, No 1, 2019

* H. K. Aggarwal, M. P. Mani, and M. Jacob, 
MoDL: Model based deep learning architecture for inverse problems
IEEE Transaction on Medical Imaging, Vol 38, No 2, 2019

PSNR and SSIM in the format average ± std.



Experiments on MRI
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GT MoDL Ours GT MoDL Ours



Measurement consistency of MoDL, CRNN and ours.

* C. Qin, J. Schlemper, J. Caballero, A. N. Price, J. V. Hajnal, D. Rueckert
Convolutional recurrent neural networks for dynamic MR image reconstruction
IEEE Transaction on Medical Imaging, Vol 38, No 1, 2019

* H. K. Aggarwal, M. P. Mani, and M. Jacob, 
MoDL: Model based deep learning architecture for inverse problems
IEEE Transaction on Medical Imaging, Vol 38, No 2, 2019

Ours

12

*

*

TV-TV Minimization achieves better consistency  

Translates to more reliable results

Experiments on MRI
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Optimization-based methods have high measurement consistency guarantee

DNNs are measurement inconsistent but provide good quality outputs

Generalization error implies inconsistency

TV-TV minimization: better quality outputs while ensuring measurement consistency

Step forward towards applying DNNs to critical areas

Conclusions
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