

Overcoming Measurement Inconsistency in Deep Learning for Linear Inverse Problems

Applications in Medical Imaging

Marija Vella

João F. C. Mota

Linear Inverse Problems

Other applications: Remote sensing, super-resolution, etc.

Classic vs. DNNs

$$\hat{x} = \underset{x}{\operatorname{arg min}} \quad r(x)$$

s.t. $Ax = b$

r : prior, tractable no training data theoretical guarantees *consistent:* $A\hat{x} = b$

state-of-the-art performance requires large training datasets no theoretical guarantees *inconsistent:* $A\hat{x} \neq b$ (in general)

Measurement Inconsistency in DNNs

Training $\theta^{\star} \in \underset{\theta}{\operatorname{arg\,min}} \frac{1}{T} \sum_{t \in \mathcal{T}} \left\| x^{(t)} - f_{\theta} \left(b^{(t)} \right) \right\|_{2}^{2}$ (empirical loss)

Deployment

Numerical Evidence

Measurement consistency of SR DNNs.

Method	Image	$\ A\hat{x} - b\ _2$		
SRCNN	Baboon 38092 img ₀₀₅	5.29×10^{-1} 4.32×10^{-1} 14.93×10^{-1}		
FSRCNN	Baboon 38092 img ₀₀₅	3.26×10^{-1} 2.91×10^{-1} 10.32×10^{-1}	CNN	
IRCNN	Baboon 38092 img ₀₀₅	$\begin{array}{c} 1.09 \times 10^{-1} \\ 9.15 \times 10^{-2} \\ 5.33 \times 10^{-1} \end{array}$	P-n-P	

Measurement consistency of MRI DNNs.

Method	$\ A\hat{x} - b\ _2$	
MoDL	3.10×10^{-1}	P-n-P
CRNN	2.06×10^{-6}	RNN

MoDL: DC layer minimize the sum of the trained CNN denoiser and $||A\hat{x} - b||_2^2$

CRNN: Embeds a DC layer than minimizes $||A\hat{x} - b||_2^2$

DNNs "ignore" measurements during deployment!

Our Work

Formalize that generalization errors imply inconsistency under ERM

New framework: guaranteeing consistency of DNN outputs

Application to MRI

Measurement Inconsistency in DNNs

Suppose we train a DNN $f_{\theta} : b \mapsto x$ for minimizing inconsistency:

$$\theta^{\star} \in \underset{\theta}{\operatorname{arg\,min}} \ \ell_{\operatorname{emp}}(f_{\theta}\,;\,\mathcal{T}) := \frac{1}{|\mathcal{T}|} \sum_{t \in \mathcal{T}} \left\| \underbrace{Ax^{(t)}}_{b^{(t)}} - \underbrace{Af_{\theta}(Ax^{(t)})}_{\widehat{x}^{(t)}} \right\|_{2}^{2}$$
$$\ell_{\exp}(f_{\theta}) := \mathbb{E} \left[\left\| AX - Af_{\theta}(AX) \right\|_{2}^{2} \right] \qquad risk$$

empirical risk

Proposition

Assume generalization error $c := \ell_{\exp}(f_{\theta^{\star}}) - \ell_{\exp}(f_{\theta^{\star}}; \mathcal{T}) > 0$ and $\epsilon := \ell_{\exp}(f_{\theta^{\star}}; \mathcal{T}) > 0$ Then, for any $0 < \delta < c + \epsilon$,

$$\mathbb{P}\left(\left\|\underline{AX - Af_{\theta^{\star}}(AX)}\right\|_{2}^{2} \ge \delta\right) \ge 1 - \exp\left(-2\frac{(c + \epsilon - \delta)^{2}}{C^{2}}\right)$$

inconsistency

New Framework: TV-TV Minimization

Improves the quality of w + Guarantees Ax = b + Easily adapted to different A operators

TV-TV Minimization

- Solved via ADMM
- All sub-problems have a closed form solution
- Algorithms details are in the paper

Experiments on MRI

PSNR and SSIM in the format average \pm std.

Method	PSNR	SSIM
MoDL	39.06 ± 1.58	0.97 ± 0.02
Ours	$\textbf{45.96} \pm \textbf{3.94}$	$\textbf{0.98} \pm \textbf{0.02}$
CRNN	24.08 ± 0.59	0.71 ± 0.03
Ours	$\textbf{25.45} \pm \textbf{0.71}$	$\textbf{0.76} \pm \textbf{0.02}$

* H. K. Aggarwal, M. P. Mani, and M. Jacob,
MoDL: Model based deep learning architecture for inverse problems
IEEE Transaction on Medical Imaging, Vol 38, No 2, 2019

* C. Qin, J. Schlemper, J. Caballero, A. N. Price, J. V. Hajnal, D. Rueckert
Convolutional recurrent neural networks for dynamic MR image reconstruction
IEEE Transaction on Medical Imaging, Vol 38, No 1, 2019

Experiments on MRI

Experiments on MRI

Measurement consistency of	of MoDL,	CRNN and ours.
----------------------------	----------	----------------

Method	$\ Aw - b\ _2$	$\ A\hat{x}-b\ _2$	
MoDL*	3.10×10^{-1}	$9.88 imes10^{-5}$	Ours
CRNN [*]	2.06×10^{-6}	$7.71 imes10^{-15}$	

TV-TV Minimization achieves better consistency

Translates to more reliable results

* C. Qin, J. Schlemper, J. Caballero, A. N. Price, J. V. Hajnal, D. Rueckert Convolutional recurrent neural networks for dynamic MR image reconstruction IEEE Transaction on Medical Imaging, Vol 38, No 1, 2019

Conclusions

- Optimization-based methods have high measurement consistency guarantee
- DNNs are *measurement inconsistent* but provide good quality outputs
- Generalization error implies inconsistency

$$\mathbb{P}\Big(\left\|AX - Af_{\theta^{\star}}(AX)\right\|_{2}^{2} \ge \delta\Big) \ge 1 - \exp\Big(-2\frac{(c+\epsilon-\delta)^{2}}{C^{2}}\Big)$$

TV-TV minimization: better quality outputs while ensuring measurement consistency

Step forward towards applying DNNs to critical areas

Relevant Papers

1. M. Vella, J. F. C. Mota, *Single Image Super-Resolution via CNN Architectures and TV-TV Minimization*, BMVC 2019

2. M. Vella, J. F. C. Mota, *Robust Single-Image Super-Resolution via CNNs and TV-TV*

Minimization, submitted

3. M. Vella, J. F. C. Mota, *Overcoming Measurement Inconsistency in Deep Learning for Linear Inverse Problems: Applications in Medical Imaging*, ICASSP 2021

Contact: mv37@hw.ac.uk