

### **Introduction / Takeaway**

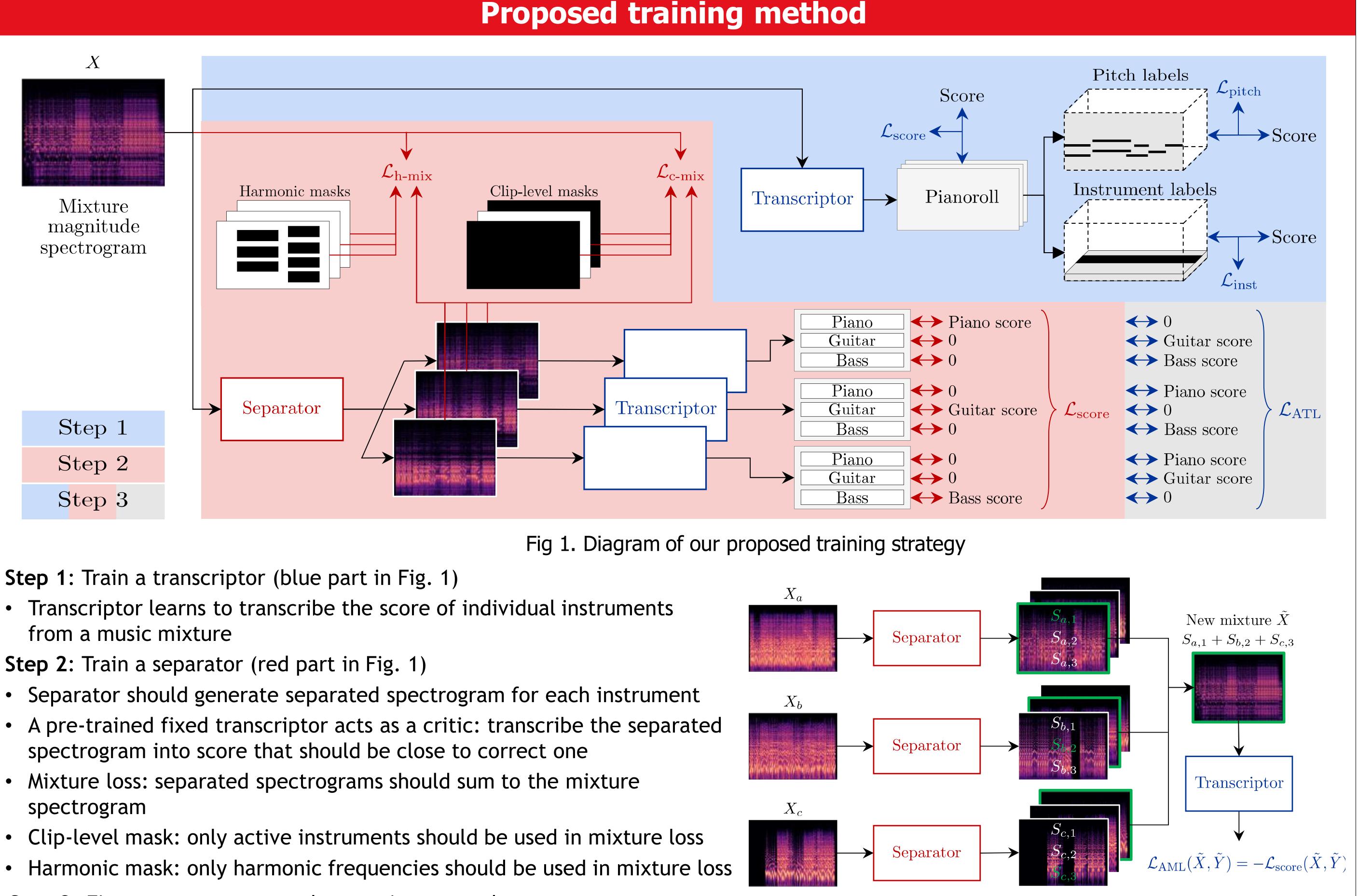
Problem in current music source separation systems:

- Rely on separated stems for supervised training
- Lots of available songs do not have separated stems but have musical scores

Our solution

- Use a three-steps method to train source separation without signal ground truth
- Rely on weak labels (scores) to train music separation system Experiments & Results
- Train and evaluate on Slakh dataset [1] for separation of three instruments (bass, guitar, and piano)
- Our proposed system outperforms baseline system [2]

| lable         | 1. Separat                                         | ion per                | formanc                         | e (not | te acc | uracy | )    |
|---------------|----------------------------------------------------|------------------------|---------------------------------|--------|--------|-------|------|
| Training      | $\mathcal{L}_{	ext{c-mix}}  \mathcal{L}_{	ext{h}}$ | -mix $\mathcal{L}_{A}$ | $_{ m ML}  {\cal L}_{ m ATL}$   | Bass   | Guitar | Piano | Av   |
| Supervised    |                                                    |                        |                                 | 11.1   | 5.7    | 7.7   | 8.   |
| isolated      | $\checkmark$                                       |                        |                                 | 7.5    | 1.2    | 4.2   | 4.   |
| isolated      |                                                    | $\checkmark$           |                                 | 7.8    | 0.4    | 4.1   | 4.   |
| isolated      | $\checkmark$                                       | $\checkmark$           |                                 | 8.4    | 1.6    | 5.0   | 5.   |
| fine-tune     | $\checkmark$                                       | $\checkmark$           |                                 | 9.0    | 2.7    | 5.3   | 5.   |
| fine-tune     | $\checkmark$                                       | $\checkmark$           | (                               | 9.1    | 2.8    | 5.4   | 5.   |
| fine-tune     | $\checkmark$                                       | $\checkmark$           | $\checkmark$                    | 9.0    | 2.5    | 5.7   | 5.'  |
| Input mixture |                                                    |                        |                                 | 1.2    | -5.8   | -2.3  | -2.3 |
| Baseline [16  | 5]                                                 |                        |                                 | 7.3    | 0.5    | 3.5   | 3.8  |
| Та            | able 2. Tra                                        | nscript                | on perfo                        | rman   | ce (SI | -SDR) |      |
| Training      | Evaluated o                                        | n $\mathcal{L}_{AN}$   | 11 $\mathcal{L}_{\mathrm{ATL}}$ | Bas    | s Gui  | tar P | iano |
| pre-train     | mixture                                            |                        |                                 | 0.85   | 5 0.4  | 4 0   | .58  |
| fine-tune     | mixture                                            |                        |                                 | 0.84   | 4 0.4  | 2 0   | .54  |
| fine-tune     | mixture                                            | $\checkmark$           |                                 | 0.86   | 5 0.5  | 51 0  | .61  |
| fine-tune     | mixture                                            |                        | $\checkmark$                    | 0.85   | 5 0.5  | 50 0  | .60  |
| pre-train     | iso tracks                                         |                        |                                 | 0.91   | 0.5    | 52 0  | .66  |
| fine-tune     | iso tracks                                         |                        |                                 | 0.90   | ) 0.5  | 53 0  | .63  |
| C i           | iso tracks                                         | $\checkmark$           |                                 | 0.91   | l 0.5  | 58 O  | .68  |
| fine-tune     |                                                    |                        |                                 | 0.01   | l 0.5  |       | .66  |


- Additional masking constraint can improve separation
- Adversarial fine-tuning improves both separation and transcription
- Compared to baseline system, we close a significant gap from the mixture SI-SDR to the supervised setting

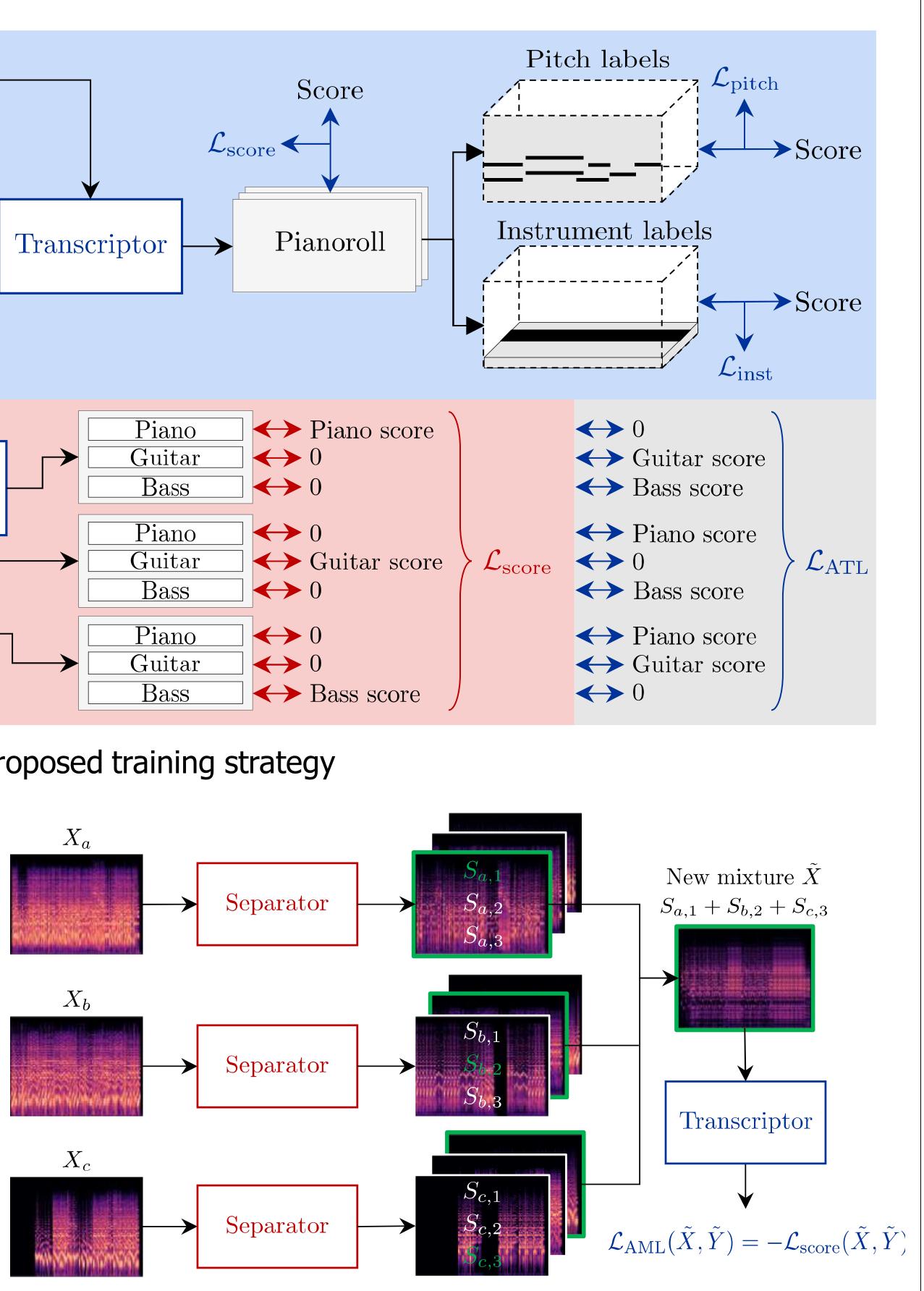
# **Transcription Is All You Need: Learning To Separate Musical Mixtures With Score As Supervision**

Yun-Ning Hung<sup>1,2</sup>, Gordon Wichern<sup>1</sup>, Jonathan Le Roux<sup>1</sup> <sup>1</sup>Mitsubishi Electric Research Labs (MERL) <sup>2</sup>Georgia Tech



line




**Step 3:** Fine-tune separator and transcriptor together

- Load pre-trained transcriptor and separator to train together

### **Future work**

- Semi-supervised learning: combine our proposed training method with supervised learning
- Using real-world data and include vocal and drum separation
- Alignment problem between audio and score

## **Proposed training method**



• Adversarial transcription loss (ATL): transcriptor tries to detect the remaining interference in separated spectrogram (grey part in Fig. 1) • Adversarial mixture loss (AML): transcriptor tries to detect errors in mixture created by separated spectrograms (Fig. 2)

[1] Manilow, Ethan, et al. "Cutting music source separation some Slakh: A dataset to study the impact of training data quality and quantity," IEEE WASPAA, 2019. [2] Fatemeh Pishdadian, Gordon Wichern, and Jonathan Le Roux. "Finding strength in weakness: Learning to separate sounds with weak supervision," IEEE/ACM TASLP, 2020.

Fig 2. Diagram of the adversarial mixture loss

## References