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Music source separation

e Goal: isolate individual sources (e.g., instruments) from a music mixture

Mixture
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Existing systems

e« Open-Unmix [1]

e Demucs [2]

e« Conv-Tasnet [3]

e MMDenselLSTM [4]
e Spleeter [5]

« Dilated GRU [6]

[1] F-R. Stoter et al. "Open-unmix-a reference implementation for music source separation," 2019.

[2] A. Défossez et al. "Demucs: Deep Extractor for Music Sources with extra unlabeled data remixed," arXiv:1909.01174, 2019.

[3]Y. Luo et al. "Conv-tasnet: Surpassing ideal time—frequency magnitude masking for speech separation," IEEE/ACM TASLP 27.8, 2019.

[4] N. Takahashi et al. "Mmdenselstm: An efficient combination of convolutional and recurrent neural networks for audio source separation," IEEE IWAENC, 2018.
[5] R. Hennequin et al. "Spleeter: A fast and state-of-the art music source separation tool with pre-trained models," ISMIR, 2019.

[6] J-Y. Liu et al. "Dilated convolution with dilated GRU for music source separation," |JCAI, 2019.
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Existing systems

e« Open-Unmix [1]
« Demucs [2]

e« Conv-Tasnet [3]

€0 am

e MMDenselLSTM [4]
« Spleeter [5]

« Dilated GRU [6]

— Supervised learning: need a dataset containing individual instrument tracks for training.
This greatly limits the data that can be used for training.

[1] F-R. Stoter et al. "Open-unmix-a reference implementation for music source separation," 2019.

[2] A. Défossez et al. "Demucs: Deep Extractor for Music Sources with extra unlabeled data remixed," arXiv:1909.01174, 2019.

[3]Y. Luo et al. "Conv-tasnet: Surpassing ideal time—frequency magnitude masking for speech separation," IEEE/ACM TASLP 27.8, 2019.

[4] N. Takahashi et al. "Mmdenselstm: An efficient combination of convolutional and recurrent neural networks for audio source separation," IEEE IWAENC, 2018.
[5] R. Hennequin et al. "Spleeter: A fast and state-of-the art music source separation tool with pre-trained models," ISMIR, 2019.

[6] J-Y. Liu et al. "Dilated convolution with dilated GRU for music source separation," |JCAI, 2019.
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What we propose

* Musical score is easier to obtain than separated tracks (e.g., Musescore [8] and Lakh MIDI
dataset [7])

Beethoven's 'Serioso' String Quartet
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Picture from MusicNet: (https://homes.cs.washington.edu/~thickstn/musicnet.html)

[7] E. Manilow et al. "Cutting music source separation some Slakh: A dataset to study the impact of training data quality and quantity," IEEE WASPAA, 2019.
[8] https://musescore.com/dashboard
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What we propose

* Musical score is easier to obtain than separated tracks (e.g., Lakh MIDI dataset [7],
Musescore [8])

* Weakly supervised training: only a song and its (alighed) score needed for training

Beethoven's 'Serioso' String Quartet
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Picture from MusicNet: (https://homes.cs.\;\'/maeshington.edu/”thickstn/musicnet.html)

[7] Manilow, Ethan, et al. "Cutting music source separation some Slakh: A dataset to study the impact of training data quality and quantity." IEEE WASPAA, 2019.
[8] https://musescore.com/dashboard
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Previous work [9]

e Separate sounds based on sound activation labels
e  Step 1: train a classifier to recognize sound events from a sound mixture
e Step 2: Fix the classifier, and use the classifier to guide the learning of the separator

Estimated Sources Frame-level Labels Clip-level Labels
| Siren |
{Siren }
Car hom
{} -« is inactive
{Singing }
[__Siren |
e { Siren, Dog, Singing }

Sound Classes = { Siren, Dog, Car horn, Singing }

[9] F. Pishdadian, G. Wichern, J. Le Roux. "Finding strength in weakness: Learning to separate sounds with weak supervision." IEEE/ACM Trans. Audio, Speech, and Language Processing (2020).
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Previous work [9]

e Separate sounds based on sound activation labels

e Step 1:train a classifier to recognize sound events from a sound mixture

e Step 2: Fix the classifier, and use the classifier to guide the learning of the separator

*Performance degrades on sound classes with complex and/or varied spectral structures

*Difficulty handling different sources that consistently appear together

© MERL

Estimated Sources

Sound Classes = { Siren, Dog, Car horn, Singing }
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Proposed system
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* We propose a three-step training strategy to further improve weakly labeled music source

separation

Mixture
magnitude
spectrogram

Step 1
Step 2
Step 3

© MERL
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Step 1 — Transcriptor training

* Replace classifier with transcriptor
* Provides information in both time and frequency dimensions
* Transcriptor learns to transcribe the score of individual instruments from the music mixture

* We use the training strategy proposed in [10] to train the transcriptor

Pitch labels r
. 2 ,T---------------,, '1'!
S(OI’( ot . E pitch
y T TTTTTEEEEE TS ’.’ |
] : |
Lycore € ' > : ;<i> Score

. S ™
Mixture e ey
magnitude - : : , s
agmin [ranscriptor —»  Pianoroll Instrument labels
spectrogram & e
s ‘--' ------------ ~

' T’Score
_’: g
Step 1 ' Lins

[10] Y-N. Hung et al. "Multitask learning for frame-level instrument recognition," IEEE /CASSP, 2019.

© MERL



‘ MITSUBISHI )
A N ELECTRIC paper id: 2698

Changes for the Better

Step 2 — Separator training

X

Mixture
magnitude
spectrogram

Step 2
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Step 2 — Separator training

X

Mixture
magnitude
spectrogram

Step 2

Overview
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e Separator should generate separated spectrogram for each instrument
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Step 2 — Separator training

L"h-mix ‘C(umix
Harmonic masks A Clip-level masks A
-
——
1=
Mixture
. 1 A0 <> Piano score
magnitude e
spectrogram (Llas >0
(—) 0
L3 Separator Transcriptor ——>» <—) Guitar score > fL2 s
«>0
—— —\_) (—) 0
m <> 0
Stel) 2 <—> Bass score |

Overview ‘ ‘

e Separator should generate separated spectrogram for each instrument

 Transcription loss: a pre-trained transcriptor acts as a critic that assesses whether the score
transcribed from the separated spectrogram is close to the correct score

© MERL



‘ MITSUBISHI )
A N ELECTRIC paper id: 2698

Changes for the Better

Step 2 — Separator training

Ch-mix E(umix
Harmonic masks A Clip-level masks A
-
1
-
Mixture A
, . ] i Plano <> Piano score
magnitude [ Guitar ] l€> 0
spectrogram L_Bas ]€>0
>0
L3> Separator Transcriptor ——>» <> Guitar score > fL2 s
<> 0
EE— [_Plano 1 <> 0
_\—> <> 0
Sth 2 €>» Bass score

t

e Separator should generate separated spectrogram for each instrument

Overview

 Transcription loss: a pre-trained transcriptor acts as a critics that assesses whether the score transcribed
from the separated spectrogram is close to the correct score

*  Mixture loss: separated spectrograms should sum to the mixture spectrogram
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Step 2 — Separator training

X

Mixture
magnitude
spectrogram

Step 2
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e (Clip-level mask -> only activated instruments should count in mixture loss

© MERL

<> Piano score
<> ()
<> ()

<> ()
<€>» Guitar score
<> ()

<> ()
<> ()
<> Bass score

J

—
. 2



‘ MITSUBISHI )
A N ELECTRIC paper id: 2698

Changes for the Better

Step 2 — Separator training

L"h-mix ‘C(umix
Harmonic masks A Clip-level masks A
-
——
1=
Mixture
. Piano <> Piano score
magnitude C_Guitar_] <> 0
spectrogram L_las J<>0
>0
L Separator Transcriptor ——» <€ Guitar score > fit=rer
[_Bas |«>0
—> [_Plano 1 <> 0
_\—> <> 0
Stel) 2 <> Bass score

Additional constraint on mixture loss
e (Clip-level mask -> only activated instruments should count in mixture loss

e Harmonic mask -> only activated harmonic position should count in mixture loss. We assume most of the
energy is in the harmonic frequencies
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Harmonic mask

Magnitude spectrogram Harmonic mask Filtered spectrogram
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* Use score (fundamental frequency) to calculate harmonic mask
* Multiply with magnitude spectrogram

* Make the harmonics salient and suppress other frequencies
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Step 3 — Fine-tuning

X

Mixture
magnitude
spectrogram

Step 3

e QOverview

* Load the pre-trained model in step 2 and fine-tune both transcriptor and separator together

© MERL
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Step 3 — Fine-tuning
X

Scorc ,:T ______________ ::’: El’i' h
A e I
¢ ¢ Lacore € | — _L ' Score
p— — --)
. ) v ._ — ' .
Lh-mix i E('-mix - oo
Harmonic masks A Clip-level masks A Transcriptor —»  Pianoroll I,lﬁlit'-l-l.lp.l_e.llt;.lﬁl-) 9,!5
P B .
- ;o P Score
e | | =L —
Mixture —1s Lo
magnitude
T Yo e Piano <> Piano score <> 0
-\I)C( tlUgl all <> 0 <> Guitar score
L Bas <> 0 <> Bass score
<> () <> Piano score
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e QOverview ‘

* Load the pre-trained model in step 2 and fine-tune both transcriptor and separator together

* Adversarial transcription loss (ATL): transcriptor attempts to detect notes from competing instruments in
separated sources
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Step 3 — Fine-tuning

Xa

New mixture X

Separator S.1+ Sp2+ S5

L R by TR
S T
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Separator

Transcriptor

Separator

Overview
* Load the pre-trained model in step 2 and fine-tune both transcriptor and separator together

 Adversarial transcription loss (ATL): transcriptor attempts to detect notes from competing instruments in
separated sources

*  Adversarial mixture loss (AML): transcriptor attempts to detect errors in synthetic mixtures composed of
separated tracks
© MERL
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Experiment

Training/Evaluation dataset
o Slakh dataset: synthetic dataset created from MIDI using professional-grade instruments
e Avoids mis-alignment between score and audio

« Choose most common three instruments: piano, distorted guitar and electric bass, for
separation

Baseline system
e Proposed by Pishdadian et al. [9]
Evaluation matric

e Scale invariant signal to distortion ratio (SI-SDR)

© MERL
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Separation Results

© MERL
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- Table 1. Separation performance (SI-SDR [dB])

Training  Lc-mix Lh-mix Lamr Latr Bass Guitar Piano Avg
Supervised 11.1 5.7 7.7 8.2
isolated v 75 1.2 42 43
isolated v 7.8 04 41 4.1
isolated v v 84 1.6 5.0 5.0
fine-tune v v 90 2.7 53 5.6
fine-tune v v 9.1 2.8 54 5.8
fine-tune v v 9.0 25 5.7 5.7
Input mixture 1.2 —-5.8 —2.3 —-2.3
Baseline [16] 73 05 3.5 3.8
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Separation Results

Table 1. Separation performance (SI-SDR[dB])

Training  Lc-mix Lh-mix £am1 LaTi Bass Guitar Piano Avg
Supervised 11.1 5.7 7.7 8.2
isolated v 75 1.2 4.2 4.3 G
isolated v 7.8 04 41 4.1
isolated v v 84 1.6 5.0 5.0
fine-tune v v 90 2.7 53 5.6
fine-tune v v 9.1 2.8 54 5.8
fine-tune v v 9.0 25 5.7 5.7
Input mixture 1.2 —-5.8 —2.3 —-2.3
Baseline [16] 73 0.5 3.5 3.8 €=

e  Our proposed system, using transcriptor, out-performs baseline system, using classifier

© MERL
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Separation Results

Table 1. Separation performance (SI-SDR[dB])

Training  Lc-mix Lh-mix £am1 LaTi Bass Guitar Piano Avg
Supervised 11.1 5.7 7.7 8.2
isolated v 75 1.2 4.2 4.3 €
isolated v 7.8 04 41 4.1
isolated v v 84 1.6 5.0 5.0 €
fine-tune v v 90 2.7 53 5.6
fine-tune v v 9.1 2.8 54 5.8
fine-tune v v 9.0 2.5 5.7 5.7
Input mixture 1.2 —-5.8 —2.3 —-2.3
Baseline [16] 73 05 3.5 3.8

e  Our proposed system, using transcriptor, out-performs baseline system, using classifier

e  Using masking constraint can further improve the separation

© MERL
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Separation Results

Table 1. Separation performance (SI-SDR[dB])

Training  Lc-mix Lh-mix £am1 LaTi Bass Guitar Piano Avg
Supervised 11.1 5.7 7.7 8.2
isolated v 75 1.2 42 43
isolated v 7.8 04 41 4.1
isolated v v 84 1.6 5.0 5.0 ¢
fine-tune v v 90 2.7 53 56
fine-tune v v 9.1 2.8 54 5.8 @
fine-tune v v 9.0 2.5 5.7 5.7
Input mixture 1.2 —-5.8 —2.3 —-2.3
Baseline [16] 73 05 3.5 3.8

e  Our proposed system, using transcriptor, out-performs baseline system, using classifier

e  Using masking constraint can further improve the separation

e  Fine-tuning transcriptor and separator can further improve separation result

© MERL
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Separation Results

- Table 1. Separation performance (SI-SDR[dB])

Training  Lc-mix Lh-mix £amr Larr Bass Guitar Piano Avg
Supervised 11.1 5.7 7.7 8.2 €=

isolated v 75 1.2 4.2 4.3
isolated v 78 04 4.1 4.1
isolated v v 84 1.6 5.0 5.0
fine-tune v v 90 2.7 53 5.6
fine-tune v v v 9.1 2.8 54 5.8 @
fine-tune v v v 90 2.5 5.7 5.7
Input mixture 1.2 —5.8 —2.3 —2.3 €=
Baseline [16] 73 05 3.5 3.8

e  Our proposed system, using transcriptor, out-performs baseline system, using classifier
e  Using masking constraint can further improve the separation
e Fine-tuning transcriptor and separator can further improve separation result

e Compared to baseline system, we close a significant gap from the mixture SI-SDR to the supervised setting
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Conclusion / takeaway

« We proposed a method to train a music source separation system based on musical score only,
without any supervision from isolated tracks

« We proposed a masking strategy and an adversarial fine-tuning strategy to further improve the
system

© MERL 29
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Future work

e Semi-supervised learning: combine our proposed training strategy with supervised learning

 Expand to vocals and drums
e Integrate with audio to score alignment algorithms

« Experiments on real-world data

© MERL 30
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Listening demo!
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Thank you!
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