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Music source separation
• Goal: isolate individual sources (e.g., instruments) from a music mixture
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Existing systems
• Open-Unmix [1]

• Demucs [2]

• Conv-Tasnet [3]

• MMDenseLSTM [4]

• Spleeter [5]

• Dilated GRU [6]
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Existing systems
• Open-Unmix [1]

• Demucs [2]

• Conv-Tasnet [3]

• MMDenseLSTM [4]

• Spleeter [5]

• Dilated GRU [6]

→ Supervised learning: need a dataset containing individual instrument tracks for training.
This greatly limits the data that can be used for training.
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What we propose
• Musical score is easier to obtain than separated tracks (e.g., Musescore [8] and Lakh MIDI 

dataset [7])
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Picture from MusicNet: (https://homes.cs.washington.edu/~thickstn/musicnet.html)

paper id: 2698

[7] E. Manilow et al. "Cutting music source separation some Slakh: A dataset to study the impact of training data quality and quantity," IEEE WASPAA, 2019.
[8] https://musescore.com/dashboard

https://musescore.com/dashboard


© MERL

What we propose
• Musical score is easier to obtain than separated tracks (e.g., Lakh MIDI dataset [7], 

Musescore [8])
• Weakly supervised training: only a song and its (aligned) score needed for training
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Picture from MusicNet: (https://homes.cs.washington.edu/~thickstn/musicnet.html)
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Previous work [9]
• Separate sounds based on sound activation labels
• Step 1: train a classifier to recognize sound events from a sound mixture
• Step 2: Fix the classifier, and use the classifier to guide the learning of the separator
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Previous work [9]
• Separate sounds based on sound activation labels
• Step 1: train a classifier to recognize sound events from a sound mixture
• Step 2: Fix the classifier, and use the classifier to guide the learning of the separator

*Performance degrades on sound classes with complex and/or varied spectral structures

*Difficulty handling different sources that consistently appear together
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Proposed system
• We propose a three-step training strategy to further improve weakly labeled music source 

separation
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Step 1 – Transcriptor training
• Replace classifier with transcriptor

• Provides information in both time and frequency dimensions

• Transcriptor learns to transcribe the score of individual instruments from the music mixture
• We use the training strategy proposed in [10] to train the transcriptor
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Step 2 – Separator training
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Step 2 – Separator training
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Overview

• Separator should generate separated spectrogram for each instrument
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Step 2 – Separator training
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Overview

• Separator should generate separated spectrogram for each instrument

• Transcription loss: a pre-trained transcriptor acts as a critic that assesses whether the score 
transcribed from the separated spectrogram is close to the correct score
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Step 2 – Separator training
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Overview

• Separator should generate separated spectrogram for each instrument

• Transcription loss: a pre-trained transcriptor acts as a critics that assesses whether the score transcribed 
from the separated spectrogram is close to the correct score

• Mixture loss: separated spectrograms should sum to the mixture spectrogram
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Step 2 – Separator training
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Additional constraint on mixture loss

• Clip-level mask -> only activated instruments should count in mixture loss
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Step 2 – Separator training
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Additional constraint on mixture loss

• Clip-level mask -> only activated instruments should count in mixture loss

• Harmonic mask -> only activated harmonic position should count in mixture loss. We assume most of the 
energy is in the harmonic frequencies
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Harmonic mask
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• Use score (fundamental frequency) to calculate harmonic mask

• Multiply with magnitude spectrogram

• Make the harmonics salient and suppress other frequencies

Magnitude spectrogram Harmonic mask Filtered spectrogram
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Step 3 – Fine-tuning
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• Overview

• Load the pre-trained model in step 2 and fine-tune both transcriptor and separator together
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Step 3 – Fine-tuning
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• Overview

• Load the pre-trained model in step 2 and fine-tune both transcriptor and separator together

• Adversarial transcription loss (ATL): transcriptor attempts to detect notes from competing instruments in 
separated sources

paper id: 2698



© MERL

Step 3 – Fine-tuning
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• Overview
• Load the pre-trained model in step 2 and fine-tune both transcriptor and separator together
• Adversarial transcription loss (ATL): transcriptor attempts to detect notes from competing instruments in 

separated sources
• Adversarial mixture loss (AML): transcriptor attempts to detect errors in synthetic mixtures composed of 

separated tracks
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Experiment
Training/Evaluation dataset

• Slakh dataset: synthetic dataset created from MIDI using professional-grade instruments

• Avoids mis-alignment between score and audio

• Choose most common three instruments: piano, distorted guitar and electric bass, for 
separation

Baseline system

• Proposed by Pishdadian et al. [9]

Evaluation matric

• Scale invariant signal to distortion ratio (SI-SDR)
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Separation Results
Table 1. Separation performance (SI-SDR [dB])

paper id: 2698



© MERL

Separation Results

• Our proposed system, using transcriptor, out-performs baseline system, using classifier
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Table 1. Separation performance (SI-SDR[dB])
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Separation Results

• Our proposed system, using transcriptor, out-performs baseline system, using classifier
• Using masking constraint can further improve the separation
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Separation Results

• Our proposed system, using transcriptor, out-performs baseline system, using classifier
• Using masking constraint can further improve the separation

• Fine-tuning transcriptor and separator can further improve separation result
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Separation Results

• Our proposed system, using transcriptor, out-performs baseline system, using classifier
• Using masking constraint can further improve the separation

• Fine-tuning transcriptor and separator can further improve separation result
• Compared to baseline system, we close a significant gap from the mixture SI-SDR to the supervised setting
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Conclusion / takeaway

• We proposed a method to train a music source separation system based on musical score only, 
without any supervision from isolated tracks

• We proposed a masking strategy and an adversarial fine-tuning strategy to further improve the 
system
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Future work

• Semi-supervised learning: combine our proposed training strategy with supervised learning

• Expand to vocals and drums

• Integrate with audio to score alignment algorithms

• Experiments on real-world data
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Listening demo!
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Thank you!
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