Unified Gradient Reweighting for Model Biasing with Applications to Source Separation

Efthymios Tzinis^{1,*} Dimitrios Bralios^{1,2,*} Paris Smaragdis^{1,3}

Motivation

- Can we take advantage of the bias in neural networks?
- Can we control the **importance** of each training example and **shift the operating point** of our model towards a specified behavior?
- How can we use bias in order to make our estimation models more robust, converge faster and more accurate for classes of interest?

Conventional Gradient Updates

• Compute the gradient wrt the loss function and update the parameters using an **unbiased** estimator of the true gradient.

$$\boldsymbol{\theta}_{k+1} = \boldsymbol{\theta}_{k} - \eta \sum_{i=1}^{B} \frac{\mathbf{g}_{k}^{(i)}}{B}, \ \mathbf{g}_{k}^{(i)} = \nabla_{\boldsymbol{\theta}_{k}} \mathcal{L}\left(f_{\boldsymbol{\theta}}\left(\mathbf{o}^{(i)}\right), \mathbf{s}^{(i)}\right)$$
• All the examples in each batch contribute $\boldsymbol{\delta}_{k} = \underset{\mathcal{U}\{1,B\}}{\mathbb{E}} \left[\mathbf{g}_{k}^{(i)}\right] = \sum_{i=1}^{B} \frac{1}{B} \mathbf{g}_{k}^{(i)}$

Unified Gradient Reweighting

We generalize the updates using a user defined pmf in order to weight the importance of the training examples non-uniformly, based on the operation point that we want to shift our model towards.

$$\boxed{\widetilde{\boldsymbol{\delta}}_{k} = \mathop{\mathbb{E}}_{p_{k}} \left[\mathbf{g}_{k}^{(i)} \right] = \sum_{i=1}^{B} p_{k} \left(\mathbf{o}^{(i)}, \mathbf{s}^{(i)} \right) \mathbf{g}_{k}^{(i)}}$$

Softmax Gradient Reweighting

Although we could define any valid pmf we propose the following simple and flexible parameterized family of distributions:

 Given an observed signal o and the corresponding target signals s for each example in the batch, we can define a weighting function F which can also be dynamically evolving across optimization iterations. k denotes the iteration index and i, i are batch indices.

[1] Tzinis et al., "Sudo RM -RF: Efficient Networks for Universal Audio Source Separation," MLSP 2020
 [2] J. Le Roux, et al., "Sdr-half-baked or well done?," ICASSP 2019.

Experimental Setup

- We perform experiments on speech (utterances from WSJ) and environmental sound (drawn from ESC 50) separation as well as their cross-product combinations.
- We utilize the **Sudo -rm rf** [1] model which provides a good trade-off between separation performance and computational requirements.
- We configure the weighting function F in order to show how we can tackle real-world problems using our gradient reweighting method.
- We use the as signal level loss function the negative permutation invariant scale-invariant signal to distortion ratio (SI-SDR) [2].

$$\text{SI-SDR}(\hat{\mathbf{s}}, \mathbf{s}^*) = -10 \log_{10} \left(\|\rho \mathbf{s}^*\|^2 / \|\rho \mathbf{s}^* - \hat{\mathbf{s}}\|^2 \right) \qquad \rho = \hat{\mathbf{s}}^\top \mathbf{s}^* / \|\mathbf{s}\|^2$$

• We evaluate all our models using SI-SDR improvement (SI-SDRi) over the input mixture.

Results and Discussion

Robust Separation (on environmental sound separation)

Test SI-SDRi (dB)

	α	Statistics										
		mean	std	1	5	10	25	50	75	90	95	99
	0	5.0	9.0	-17.5	-6.9	-2.5	0.0	2.7	9.5	17.1	22.0	31.5
	$^{1/15}$	4.6	7.8	-14.7	-4.4	-1.4	0.1	2.4	8.4	15.2	19.4	29.0
	1/10	3.6	6.0	-6.5	-2.2	-1.0	-0.1	1.1	6.1	12.1	16.1	23.5
7	1/5	3.0	4.8	-2.8	-0.9	-0.3	0.0	0.6	4.9	9.8	13.2	19.8

Faster Convergence (Curriculum Learning)

We make the model be more biased towards learning the "easy" examples (with lower value of loss) first, and gradually converging to a uniform distribution.

Biasing the model towards specific classes

We train the model using mixtures with sources from both *speech* and *environmental* (*Env.*) sounds. We use higher values of gamma for the corresponding class that we are mostly interested in.

$$\check{\mathbf{F}}_k(\mathbf{o}^{(i)}, \mathbf{s}^{(i)}) = \gamma(c^{(i)})$$

γ		Mean test SI-SDRi (dB)					
Speech	Env.	Speech	Env.	Combined			
0	0	12.2 ± 0.1	13.1 ± 0.1	12.7 ± 0.1			
0	3	11.8 ± 0.2	$\bf 13.5 \pm 0.1$	12.6 ± 0.1			
3	0	12.7 ± 0.1	13.1 ± 0.1	12.9 ± 0.1			

We can get a **significant boost** in the reconstruction quality for the class that we choose the higher weight over the baseline (same weights).

Conclusions

- We have presented a **simple** and **easily extendable** unified gradient reweighting scheme with **negligible computational cost**.
- We showed that we can use it towards solving multiple real-world problems appearing in the process of training separation networks, such as: robustness, convergence and adaptation to specific classes.