

Hierarchical Attention Fusion for Geo-Localization

Liqi Yan¹, Yiming Cui², Yingjie Chen³, Dongfang Liu^{3*}

(¹Fudan University, China) (²University of Florida, USA) (³Purdue University, USA) *liu2538@purdue.edu

INTRODUCTION

Related Works

- Problem: Landmarks with medium or small sizes are difficult to be recognized.
- Reason: Concurrent methods [1-3]

Fig.1. Comparison of feature emphasis.

only use features from one semantic level.

 Our method: Exploiting the multiscale features for hierarchical attention to depict image representation of landmarks with different scales and distance, as shown in Fig. 1.

Contribution:

- A hierarchical attention fusion network.
- A self-supervised loss function.
- A new state-of-the-art on several geo-localization benchmarks.

Fig.2. The architecture of the proposed method

Network Architecture: As Fig. 2 shows, we perform the attention fusion over the obtained features to produce strong image representation for landmarks with different scales.

Training Objective: For a pair of image (I_q, I_r) , we include a detection term to compute their differences:

$$\Delta \mathcal{D}(I_q, I_r) = \sum_{c \in \mathcal{C}} \frac{s_q^{c'} s_r^{c'}}{\sum_{c' \in \mathcal{C}} s_q^{c'} s_r^{c'}} \left\| K_q^c - K_r^c \right\|_2$$

Thus, the triple ranking loss is defined as: $\mathcal{L}(I_q, I_r^+, I_r^-) = max(M + \Delta D(I_q, I_r^+) - \Delta D(I_q, I_r^-), 0)$

RESULTS

Method	Oxford 5K		Paris 6k		Holidays	
	full	crop	full	crop	orig	rot
Ours	67.81	69.52	75.10	78.29	84.82	88.41
CRN	63.95	65.52	72.88	75.85	83.19	87.30
NetVLAD	63.09	65.33	72.53	75.67	82.67	86.83
SuperPoint	63.14	65.50	72.83	75.10	82.92	86.90

Table1: Results for compact image representations (256-D).

Method	Pitts 250k-test	TokyoTM-val	Tokyo 24/7	Sf-0
$\begin{bmatrix} w_1 \\ w_2 \\ w_2 \end{bmatrix}$	0.1 0.4 0.5	$\begin{bmatrix} 0.3 \\ 0.3 \\ 0.4 \end{bmatrix}$	0.2	0.1

Table2: Best adaptive weights which produces the best recall@5 for each benchmarks.

Fig. 3: Comparison of recalls at N top retrievals with the state-of-the-arts methods.

We compare our method with the state-of-the-art methods, NetLAVD [1], CRN [2], and SuperPoint [3].

Image retrieval benchmarks:

The results are displayed in Table 1. Our results set the state-of-the-art for compact image representations (256-D) on all three benchmarks. On all metrics, our margins consistently exceed the mAP of other methods by 1 to 5%.

Geo-localization benchmarks: We report the Precision-Recall plot for each method in Fig. 3. Our method outperforms other methods under different recall@n thresholds on all benchmarks.

CONCLUSION

A hierarchical attention fusion network for geo-localization. Approach: Extracting the multi-scale feature maps from a convolutional neural network (CNN) to perform hierarchical attention fusion for image representations. Advantage: Since the hierarchical features are scale-sensitive, our method is robust to landmarks with different scales and distances. Experimental Results: indicate that our method is competitive with the latest state-of-the-art approaches on the image retrieval benchmarks and the large-scale geo-localization benchmarks.

REFERENCES

[1] Relja Arandjelovic, Petr Gronat, Akihiko Torii, Tomas Pajdla, and Josef Sivic, "Netvlad: Cnn architecture for weakly supervised place recognition," in Proceedings of CVPR, 2016, pp. 5297–5307.

[2] Hyo Jin Kim, Enrique Dunn, and Jan-Michael Frahm, "Learned contextual feature reweighting for image geolocalization," in Proceedings of CVPR, 2017, pp. 2136–2145.

[3] Daniel DeTone, Tomasz Malisiewicz, and Andrew Rabinovich, "Superpoint: Self-supervised interest point detection and description," in Proceedings of CVPR Workshop, 2018, pp. 224–236.