General Total Variation Regularized Sparse Bayesian Learning for Robust Block-Sparse Signal Recovery

Aditya Sant*, Markus Leinonen[†] and Bhaskar D. Rao*

*Department of Electrical and Computer Engineering, University of California San Diego [†]Centre for Wireless Communications – Radio Technologies, University of Oulu, Finland

46th International Conference on Acoustics, Speech, and Signal Processing

Introduction 0000	SBL with Novel Hyperparameter Regularization	Performance Results 000000	Conclusion 00
Overvi	ew		
0	IntroductionObjectives and System ModelSparse Bayesian Learning: Background	[Poster Slide: [Poster Slide:	1] 2]
2	 SBL with Novel Hyperparameter Regularization Motivation for TV-SBL TV-SBL Regularizers for Block-sparsity TV-SBL Optimization Framework 	[Poster Slide: [Poster Slide: [Poster Slide:	3] 3] 4]
3	 Performance Results Performance Metric Comparing TV-SBL Penalties Comparing with Benchmark Block-sparse Recover 	ery [Poster Slide:	4]

4 Conclusion

Introduction	SBL with Novel Hyperparameter Regularization	Performance Results	Conclusion
0000	0000	000000	00

- Objectives and System Model
- Sparse Bayesian Learning: Background

[Poster Slide: 1] [Poster Slide: 2]

SBL with Novel Hyperparameter Regularization

3 Performance Results

Introduction	SBL with Novel Hyperparameter Regularization	Performance Results	Conclusion
0000			
Objectives and System Model			[Poster Slide: 1]
Block-sparse S	ignal Recovery		

Block-sparse signal recovery: Overview

- Applications in, e.g., mmWave comm., audio and image processing
- Block sizes and boundaries unknown: Number of possible blocks grows exponentially in signal size

 $\sim M$

MMV block-sparse signal model:

•
$$\mathbf{y}_l \in \mathbb{C}^{M \times N}$$
: measurement at time l ,
 $\mathbf{A} \in \mathbb{C}^{M \times N}$: dictionary, & \mathbf{n}_l : AWGN
at time l

- Source and noise vectors are i.i.d
- Signal ensemble $\mathbf{X} = [\mathbf{x}_1 \cdots \mathbf{x}_L]$ is block-row-sparse with block sizes and locations unknown

Our aim: Develop algorithm robust to different signal block-sparsity structures

СГ					N 4 N 43 7	<u> </u>	<u><u><u></u></u>.</u>				
Sparse Bayesian	Learning: Bac	kground							[Poster Slide: 2	2]
0000											
Introduction			n Novel I	Hyperparameter Regi	ularization		Performanc	e Results		Conclusio	

Sparse Bayesian Learning (SBL) for MMV Sparse Signal Recovery

Advantages of using the SBL framework for MMV sparse recovery

- The M-SBL [Wipf, Rao, 2007] abstracts row sparsity of X by a single parameter (γ_i), reducing parameters from NL to N
- It falls under the class of methods that are **correlation-aware** which have shown superior ability to find sparse solutions [Pal, Vaidyanathan, 2014]
- SBL shows great promise for sparse signal recovery under **correlated sources** and ill-conditioned dictionaries [Pote, Rao, 2020]

SBL framework

• Parametric Gaussian prior for each signal as

$$p(\mathbf{x}_l; \boldsymbol{\gamma}) = \mathcal{CN}(\mathbf{0}, \boldsymbol{\Gamma}) = \frac{1}{|\pi \boldsymbol{\Gamma}|} \exp\left(-\mathbf{x}_l^{\mathsf{H}} \boldsymbol{\Gamma}^{-1} \mathbf{x}_l\right), \ \ \boldsymbol{\Gamma} \triangleq \mathsf{diag}(\boldsymbol{\gamma})$$

• $\boldsymbol{\gamma} = [\gamma_1 \cdots \gamma_N]^\mathsf{T} \in \mathbb{R}^N_+$ is a vector of hyperparameters reflecting sparsity

SBL solves sparse recovery by estimation of the hyperparameters γ , instead of each sparse row of ${f X}$ individually

Introduction	SBL with Novel Hyperparameter Regularization	Performance Results	Conclusion
0000			
Sparse Bayesian Learning	g: Background		[Poster Slide: 2]
SRI Inferen	ce. Hyperparameter Estimation		

SBL inference: Type-II maximum a posteriori (MAP) estimation of the posterior $p(\gamma|\mathbf{y}_1,\ldots,\mathbf{y}_L)$ over γ

• General optimization equation:

$$\boldsymbol{\gamma}^* = \operatorname*{argmin}_{\boldsymbol{\gamma} \succeq \mathbf{0}} L \log |\boldsymbol{\Sigma}_{\mathbf{y}}| + \sum_{l=1}^{L} \mathbf{y}_l^{\mathsf{H}} \boldsymbol{\Sigma}_{\mathbf{y}}^{-1} \mathbf{y}_l - \log p(\boldsymbol{\gamma}),$$

where $\Sigma_y = \lambda I + A \Gamma A^H$ and $\log p(\gamma)$ is the hyperprior on γ

• Sparse signal: MAP estimate over posterior density $p(\mathbf{x}_l|\mathbf{y}_l; \boldsymbol{\gamma})$

$$\boldsymbol{\mu}_{\mathbf{x}_l|\mathbf{y}_l;\boldsymbol{\gamma}} = \lambda^{-1} \boldsymbol{\Sigma}_{\mathbf{x}|\mathbf{y};\boldsymbol{\gamma}} \mathbf{A}^{\mathsf{H}} \mathbf{y}_l, \quad \boldsymbol{\Sigma}_{\mathbf{x}|\mathbf{y};\boldsymbol{\gamma}} = \left(\lambda^{-1} \mathbf{A}^{\mathsf{H}} \mathbf{A} + \boldsymbol{\Gamma}^{-1}\right)^{-1}$$

Role of hyperprior: $\log p(\gamma)$

- Used to enforce additional structure on signal X
- Improve recovery when the number of snapshots are limited

Our approach: We introduce a robust block-sparsity hyperprior $\log p(\boldsymbol{\gamma})$

SBL with Novel Hyperparameter Regularization	Performance Results	Conclusion
0000		

SBL with Novel Hyperparameter Regularization

- Motivation for TV-SBL
- TV-SBL Regularizers for Block-sparsity
- TV-SBL Optimization Framework

[Poster Slide: 3] [Poster Slide: 3] [Poster Slide: 4]

Performance Results

Introduction	SBL with Novel Hyperparameter Regularization	Performance Results	Conclusion
	0000		
Motivation for TV-SBL			[Poster Slide: 3]
Block-sparse	Regularization Using Total Varia	ation	

Limitations of existing approaches:

- Conventional methods (e.g., Block-OMP) need block size and boundaries
- SBL-based methods (e.g., PC-SBL) impose *stringent explicit* hyperparameter coupling and are sensitive to any model mismatch

Our approach: SBL with Total Variation (TV) regularization for hyperparameters, i.e., **TV-SBL**

- Inspired by an ideal block-counting measure $T(\gamma) = \sum_{i} I(|\gamma_i \gamma_{i-1}|)$
- Imposed on SBL hyperparameters, as opposed to the signal; important distinction and also key to the success of our approach
- Assumes equal variances (SBL hyperparameter γ) of the entries within a block, optimally counting the edges
- Tractable measures developed in CS for $I(|\gamma_i \gamma_{i-1}|)$; we investigated two such measures

Block-sparsity enforced through block counting in SBL hyperparameter space

	SBL with Novel Hyperparameter Regularization	Performance Results	Conclusion
	0000		
TV-SBL Regularizers fo	r Block-sparsity		[Poster Slide: 3]
TV-SBL Re	gularizers		

Original intractable block-counting measure: $T(\boldsymbol{\gamma}) = \sum_{i=2}^{N} I(|\gamma_i - \gamma_{i-1}|)$

- Block-extension to the elementary sparsity-promoting ℓ_0 "norm"
- $\bullet\,$ Tractability introduced through surrogate measures for $I(\cdot)$

1) Linear TV:
$$T(\boldsymbol{\gamma}) = \sum_{i=2}^{N} |\gamma_i - \gamma_{i-1}|$$

- Equivalent to the ℓ_1 -norm regularization in CS
- Penalty in this form: **TV-regularizer** used in signal processing to preserve edges and enforce local smoothness
- 2) Log TV: $T(\boldsymbol{\gamma}) = \sum_{i=2}^{N} \log(|\gamma_i \gamma_{i-1}| + \epsilon)$
 - Extending the CS regularizer $\sum_{i=1}^N \log(|x_i|+\epsilon)$ [Candés,Wakin,Boyd,2008]
 - Here too we employ iterative reweighted ℓ_1 minimization for inference
 - Analogous to CS, shows better performance than Linear TV

These regularizers enable formulation of TV-SBL via convex optimization

Introduction	SBL with Novel Hyperparameter Regularization	Performance Results	Conclusion
	0000		
TV-SBL Optimization Framew	ork		[Poster Slide: 4]
Convex Optimi	zation Formulation of TV-SBL		

Solving unregularized SBL as a convex optimization [Wipf,Nagarajan,2008]

Using the majorization minimization (MM) on the concave term $\log |\Sigma_{\mathbf{y}}|$ as $\log |\lambda \mathbf{I} + \mathbf{A} \Gamma \mathbf{A}^{\mathsf{H}}| \leq \log |\lambda \mathbf{I} + \mathbf{A} \Gamma^{(j)} \mathbf{A}^{\mathsf{H}}| + \operatorname{Tr} ((\Sigma_{\mathbf{y}}^{(j)})^{-1} \mathbf{A} \mathbf{A}^{\mathsf{H}} [\Gamma - \Gamma^{(j)}]),$ enables solving the **unregularized** SBL cost function as a convex optimization

1) Linear TV:

Block-sparse TV regularizer is convex, hence the optimization is

$$\boldsymbol{\gamma}^{(j+1)} = \operatorname*{argmin}_{\boldsymbol{\gamma} \succeq \mathbf{0}} L \operatorname{Tr} \left(\left(\boldsymbol{\Sigma}_{\mathbf{y}}^{(j)} \right)^{-1} \mathbf{A} \boldsymbol{\Gamma} \mathbf{A}^{\mathsf{H}} \right) + \sum_{l=1}^{L} \mathbf{y}_{l}^{\mathsf{H}} \boldsymbol{\Sigma}_{\mathbf{y}}^{-1} \mathbf{y}_{l} + \beta \sum_{i=2}^{N} |\gamma_{i} - \gamma_{i-1}|$$

2) Log TV:

Analogous to CS, the Log TV penalty is majorized, giving the optimization

$$\begin{split} \boldsymbol{\gamma}^{(j+1)} &= \operatorname*{argmin}_{\boldsymbol{\gamma} \succeq \mathbf{0}} L \operatorname{Tr} \left(\left(\boldsymbol{\Sigma}_{\mathbf{y}}^{(j)} \right)^{-1} \mathbf{A} \boldsymbol{\Gamma} \mathbf{A}^{\mathsf{H}} \right) + \sum_{l=1}^{L} \mathbf{y}_{l}^{\mathsf{H}} \boldsymbol{\Sigma}_{\mathbf{y}}^{-1} \mathbf{y}_{l} \\ &+ \beta \sum_{i=2}^{N} \frac{1}{|\gamma_{i}^{(j)} - \gamma_{i-1}^{(j)}| + \epsilon} \left| \gamma_{i} - \gamma_{i-1} \right| \end{split}$$

This enables a flexible choice of numerical solvers and optimization techniques; Our optimization technique: CVX toolbox for $MATLAB^{\textcircled{R}}$

ICASSP 2021

SBL with Novel Hyperparameter Regularization	Performance Results	Conclusion
	00000	

2 SBL with Novel Hyperparameter Regularization

Performance Results

- Performance Metric
- Comparing TV-SBL Penalties
- Comparing with Benchmark Block-sparse Recovery

[Poster Slide: 4]

④ Conclusion

	SBL with Novel Hyperparameter Regularization	Performance Results	Conclusion
		00000	
Performance Metric			
Simulation	Setup and Block Distributions		

Measurement Setup and Algorithm evaluation:

- Measurement: L = 5 snapshots of length M = 20
- *NMSE*: Defined as $\mathbb{E}[||\hat{\mathbf{X}} \mathbf{X}||^2/||\mathbf{X}||^2]$, for the estimated $\hat{\mathbf{X}}$
- Support recovery: Evaluated using $F_1 = \mathbb{E} \left[2 \frac{(\text{precision} \times \text{recall})}{\text{precision} + \text{recall}} \right]^1$

Block distributions used: (Total signal length: 150 with sparsity: 10)

1) Homogeneous block-sparsity 2) Random sparsity

3) Hybrid sparsity

Signal: 2 blocks of size 5 each Signal: 10 isolated components Signal: 2 blocks of size 4 & 3,

& 3 isolated components

precision = tp/(tp + fa), recall = tp/(tp + mis), "tp": true positives, "fa": false alarms, and "mis": misdetections

Department of Electrical and Computer Engineering, UCSD & CWC - Radio Technologies, UOulu

	SBL with Novel Hyperparameter Regularization	Performance Results	Conclusion
		00000	
Comparing TV-SBL Penalties			
Comparing TV	Penalties		

Performance of TV-SBL regularizers for Homogeneous Block-sparsity:

- TV-regularization promotes block-sparsity over unregularized M-SBL
- Log TV more adept at identifying block structures over Linear TV

Improved performance of Log TV, consistent with CS theory, is because it is a better tractable surrogate for the block-counting measure

Remark: Subsequent tests for TV-SBL use Log TV regularization

	SBL with Novel Hyperparameter Regularization	Performance Results	Conclusion
		000000	
Comparing with Benchn	nark Block-sparse Recovery		[Poster Slide: 4]

Comparing TV-SBL to Benchmark Block-sparse Recovery Algorithms

Performance comparison for Homogeneous Block-sparsity

- Superior support recovery: *BSBL [Zhang,Rao,2013]*, due to prior information of block size and boundaries
- Superior NMSE: *Burst Sparsity Learning [Dai,et al.,2019]* due to optimal SBL hyperparameter coupling-based inference for block-sparsity
- TV-SBL performance: Softer TV-based encourages block structure, though not as optimally as explicit coupling

Best strategy for homogeneous block-sparsity: Exact hyperparameter coupling

	SBL with Novel Hyperparameter Regularization	Performance Results	Conclusion
		000000	
Comparing with Benchma	ark Block-sparse Recovery		[Poster Slide: 4]
c · -			

Comparing TV-SBL to Benchmark Block-sparse Recovery Algorithms

Performance comparison for Random Sparsity (Isolated components)

- Represents least favourable scenario for block-sparse recovery algorithms
- Superior Performance: M-SBL, due to absence of block-sparse prior
- TV-SBL performance: Outperforms other block-sparse regularizers due to softer prior without excessive bias to block-structure

Using a softer prior, TV-SBL supports block-sparsity without excessive bias, hence remarkably adept at isolated sparsity as well

	SBL with Novel Hyperparameter Regularization	Performance Results	Conclusion
		000000	
Comparing with Benchmark Bloc	:k-sparse Recovery		[Poster Slide: 4]
Comparing TV-	SBL to Benchmark Block-sparse I	Recovery Algorithm	าร

Performance comparison for Hybrid Sparsity

- Representative of a practical scenario for, e.g., MIMO wireless channels
- TV-SBL performance: Outperforms all algorithms, robustly accommodating both block-sparse and isolated components

Overall, TV-SBL obtains superior trade-off between recovering block-sparse and random sparse signals, hence a very robust algorithm

Introduction	SBL with Novel Hyperparameter Regularization	Performance Results	Conclusion
			•0

2 SBL with Novel Hyperparameter Regularization

Performance Results

4 Conclusion

Introduction	SBL with Novel Hyperparameter Regularization	Performance Results	Conclusion
0000	0000		⊙●
Conclusions and	d Future Work		

Through the novel TV hyperparmeter regularized SBL framework:

- Introduce an SBL regularizer based on an ideal block-counting metric
- Iterative convex optimization strategy; enables efficient numerical solvers
- Soft TV-SBL prior not biased to block structure
- Superior trade-off between block-sparse and random sparse signals; robust signal recovery

Future work:

- Explore further surrogate measures for the block-counting function
- Generalize perspective of TV regularization beyond the current block-counting function

SBL hyperparameter regularization holds immense potential for block-sparse recovery, both from a conceptual perspective and an efficient algorithm design