
Recurrent Phase Reconstruction Using Estimated Phase
Derivatives From Deep Neural Networks

Lars Thieling, Daniel Wilhelm, Peter Jax

www.iks.rwth-aachen.de International Conference on Acoustics, Speech, and Signal Processing (ICASSP) 2021, Toronto, Canada

3451

1 Introduction
Problem: Estimate phase φ from given magnitude spectrum M such
that a consistent time signal is achieved via inverse short-time Fourier
transform (ISTFT)
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Applications:
Speech enhancement and speech separation
Speech synthesis and voice conversion

2 System Overview
Novelty I

Novelty II

Novelty III
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STFT: short-time Fourier transform
M : magnitude spectrum
φ: phase spectrum
ψif: instantaneous frequency (IF)
ψgd: group delay (GD)

Two-stage phase reconstruction system (similar to [1]):
1. Use deep neural networks (DNNs) to estimate phase derivatives 3

ψif (k,m) := ∆tφ (k,m) = φ (k,m)−φ (k,m−1)
ψgd (k,m) := ∆fφ (k,m) = φ (k,m)−φ (k−1,m)

2. Reconstruct phase from its estimated derivatives 4

Proposed improvements:
I. A novel regularized cosine loss function
II. Shift correction (SC) as a pre-processing step
III. A novel phase reconstruction method

k: freq. bin index
m: frame index

3 Phase Derivatives Estimation

Train two equally structured
DNNs using combined loss:

Ltotal = L
∆ψ̂if

 + L
∆ψ̂gd



L should consider 2π ambiguity and have a limited solution space

Novelty I - regularized cosine loss function:

Lreg
∆ψ̂

 :=
∑
k,m

− cos
∆ψ̂ (k,m)

 + λ ·
∆ψ̂ (k,m)
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Systematic offsets occur in
the calculation of ψif and ψgd

Offset in ψif can be described
by the shift theorem of the
DFT:

x (n− S)↔ X(k) · ej
2π
N kS

Systematic shift in ψgd can
be observed empirically
Novelty II - shift correction:

ψ?if (k,m) =W
ψif (k,m)− π

2
k



ψ?gd (k,m) =W (ψgd (k,m) + π)
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DFT: discrete Fourier transform
S = N

4 : window shift
N : DFT size

W (·): wrapping operator

4 Phase Reconstruction Method

Combine ψ̂if and ψ̂gd such that a con-
sistent φ̂ is achieved

Novelty III - averaging of weighted
estimates ϕp from P paths:

φ̂ (k,m) =∠
P∑

p = 1
αp (k,m) · ejϕp(k,m)

with estimation quality indicators αp:

α1 (k,m) = M (k − 1,m)
α2 (k,m) = M (k,m− 1)
α3 (k,m) = min

l={-1,0}
M (k + 1,m + l)

Polar histograms of path error
ϕp (k,m) − φ (k,m) demonstrate
suitability of chosen weights
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5 Evaluation

Validation accuracies of different DNN configurations during training:

→ LMSE is inappropriate → SC increases accuracy in first epoch
→ Lreg stabilizes training of GD → SC stabilizes against hyperparameter variations

Ph
as
e
De

riv
at
ive

sE
sti
m
at
ion

Results after phase reconstruction using different methods:

→ Proposed reconstruction method outperforms reference algorithms
→ Similar performance to Griffin-Lim (100 it.) although no iterations are required
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Accuracy: Mean cosine error
Dataset: 18.5 hours training data

3.5 hours validation data
16 kHz sample rate

DNN: 3 hidden layers à 1024 units
Normalized log magnitude of frames at
±2, ±1 and 0 as input features
Varying activation function: sigmoid,
tanh, ReLU, LeakyReLU, gated linear,
gated tanh

STFT: 640 samples Hann window
160 samples window shift
640 DFT size
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IF integral 0.8855 2.703
RPU [1] 0.9451 3.438
Proposed 0.9852 4.197
Griffin-Lim (10 it.) 0.9642 3.597
Griffin-Lim (100 it.) 0.9920 4.246

Scan for more audio samples:

http://iks.rwth-aachen.de/qr/
icassp2021-rpr

6 Conclusion

I Proposed novelties significantly improve phase reconstruction system

I Novelty I - regularized cosine loss function stabilizes training

I Novelty II - shift correction further stabilizes and accelerates training

I Novelty III - phase reconstruction method outperforms reference algo-
rithms
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